Connect with us

Science

Aditya-L1: The Indian first mission to the Sun is successfully launched

Published

on

At 11:50 India time (06:20 GMT) on Saturday, Aditya-L1 launched from the launch facility at Sriharikota.

It will cover 1.5 million kilometres (932,000 miles) or 1% of the distance between the Earth and the Sun.

According to India’s space agency, the journey will take four months.

The name of India’s first space-based project to examine the largest object in the solar system comes from Surya, the Hindu sun god also known as Aditya.

L1 stands for Lagrange point 1, the precise location where the Indian spacecraft is travelling between the Sun and Earth.

A Lagrange point, according to the European Space Agency, is a location where the gravitational pull of two enormous objects, such as the Sun and the Earth, cancel each other out and allow a spacecraft to “hover.”

Aditya-L1 will be able to orbit the Sun at the same speed as the Earth once it reaches its “parking spot” This implies that the satellite will run on very little fuel.

A few thousand people gathered to watch the launch on Saturday morning at the viewing gallery set up by the Indian Space Research Agency (Isro) close to the launch site.

Additionally, it was live-broadcast on national television, where the pundits referred to it as a “magnificent” launch. The launch was successful, according to Isro experts, and its “performance is normal.”

Before heading towards L1, the spacecraft will now make many orbits of the planet.

Aditya-L1 will be able to observe the Sun continuously from this vantage point, even when it is obscured by an eclipse, and conduct research.

Isro has not specified the cost of the mission, however estimates in the Indian press estimate it to be 3.78 billion rupees ($46 million; £36 million).

According to Isro, the orbiter is equipped with seven scientific tools to examine and analyse the solar corona, which is the sun’s outermost layer, the photosphere, which is the part of the sun that we can see from Earth, and the chromosphere, which is a thin layer of plasma between the photosphere and the corona.

The research will aid in the understanding of solar activity, including solar wind and solar flares, and their immediate impact on Earth and near-space weather.

Mylswamy Annadurai, a former scientist of Isro, claims that the Sun constantly affects Earth’s weather through radiation, heat, the movement of particles, and magnetic fields. He claims that it also affects the space weather at the same time.

“Space weather plays a role in how effectively the satellites function. Solar winds or storms can affect the electronics on satellites, even knock down power grids. But there are gaps in our knowledge of space weather,” Mr Annadurai told the BBC.

India has more than 50 satellites in orbit, and they offer the nation a variety of vital services including communication channels, weather information, and assistance in forecasting pest infestations, droughts, and imminent disasters. Nearly 7,800 of the 10,290 satellites still in Earth’s orbit are active, according to the United Nations Office for Outer Space Affairs (UNOOSA).

According to Mr. Annadurai, Aditya will aid in our understanding of the star that is essential to our survival and even provide us with a warning.

We can shift our satellites out of harm’s way if we are aware of the Sun’s activities, such as solar wind or an impending solar eruption, a few days in advance. This will prolong the life of our satellites in orbit.

The mission, he continues, will primarily contribute to advancing our knowledge of the Sun, the 4.5 billion year old star that is the centre of our solar system.

Just a few days prior to its solar mission, India had successfully landed the first probe in history close to the lunar south pole.

With that, India joined the United States, the former Soviet Union, and China as the only other nations to successfully complete a soft landing on the moon.

India will join the exclusive group of nations that are already researching the Sun if Aditya-L1 is a success.

Japan launched the first mission in 1981 to investigate solar flares, and since the 1990s, both the US space agency Nasa and the European Space Agency (ESA) have been keeping an eye on the Sun.

A Solar Orbiter that was jointly launched by NASA and ESA in February 2020 is studying the Sun up close and gathering data that, according to scientists, will help them understand what motivates its dynamic activity.

And in 2021, the Parker Solar Probe, one of NASA’s newest spacecraft, made history by being the first to go through the corona, the Sun’s outer atmosphere.

Science

Dinosaur-Era Bird Brains show the Origins of Avian Intelligence

Published

on

One of the most enduring mysteries of vertebrate evolution is how the distinct brains and intellect of contemporary birds developed, and a “one of a kind” fossil discovery could revolutionize our knowledge of this process.

An exceptionally well-preserved fossil bird from the Mesozoic Era, around the size of a starling, has been discovered by researchers. This is one of the most important discoveries of its kind since the entire skull has been preserved nearly intact, which is uncommon for any fossil bird but especially for one so old.

The researchers, lead by the Natural History Museum of Los Angeles County and the University of Cambridge, were able to digitally rebuild the bird’s brain, which they have called Navaornis hestiae, thanks to the remarkable three-dimensional preservation of the skull. Before the catastrophic extinction catastrophe that wiped off all non-avian dinosaurs, Navaornis thrived in what is now Brazil around 80 million years ago.

According to the researchers, their finding, which was published in the journal Nature, may serve as a kind of “Rosetta Stone” for figuring out the evolutionary history of the contemporary bird brain. The fossil closes a 70-million-year gap in our knowledge of the evolution of bird brains between the 150-million-year-old Archaeopteryx, the first known dinosaur that resembled a bird, and modern birds.

Given that its cerebrum was larger than Archaeopteryx’s, Navaornis may have possessed more sophisticated cognitive abilities than the first dinosaurs that resembled birds. But the majority of its brain regions, such as the cerebellum, were underdeveloped, indicating that it had not yet developed the sophisticated flight control systems found in contemporary birds.

According to co-lead author Dr. Guillermo Navalón of Cambridge’s Department of Earth Sciences, “the brain structure of Navaornis is almost exactly intermediate between Archaeopteryx and modern birds – it was one of these moments in which the missing piece fits absolutely perfectly.”

The fossil was found in 2016 at a location in the nearby neighborhood of Presidente Prudente, and Navaornis is named for William Nava, director of the Museu de Paleontologia de Marília in São Paolo State, Brazil. This location was probably a dry region with slowly moving creeks tens of millions of years ago, which allowed for the fossil’s remarkable preservation. Because of its preservation, the researchers were able to recreate the bird’s brain and skull in remarkably detailed detail using cutting-edge micro-CT scanning technology.

“This fossil is truly so one-of-a-kind that I was awestruck from the moment I first saw it to the moment I finished assembling all the skull bones and the brain, which lets us fully appreciate the anatomy of this early bird,” Navalón said.

According to the study’s principal author, Professor Daniel Field of Cambridge’s Department of Earth Sciences, “modern birds have some of the most advanced cognitive capabilities in the animal kingdom, comparable only with mammals.” “But scientists have struggled to understand how and when the unique brains and remarkable intelligence of birds evolved—the field has been awaiting the discovery of a fossil exactly like this one.”

The evolutionary transition between the brains of Archaeopteryx and modern birds was essentially unknown prior to this finding. “This represents nearly 70 million years of avian evolution in which all the major lineages of Mesozoic birds originated – including the first representatives of the birds that live today,”  Navalón said. “Navaornis sits right in the middle of this 70-million-year gap and informs us about what happened between these two evolutionary points.”

Even though Navaornis’s head initially looks a lot like that of a little pigeon, a closer look shows that it is actually a member of an ancient bird species known as enantiornithines, or the “opposite birds.”

Although “opposite birds” split from contemporary birds about 130 million years ago, they probably had sophisticated feathers and could fly just as well as modern birds. The Navaornis’s brain structure raises a new puzzle, though:how did opposite birds control their flight without the full suite of brain features observed in living birds, including an expanded cerebellum, which is a living bird’s spatial control centre?

Field, who is also the Strickland Curator of Ornithology at Cambridge’s Museum of Zoology, stated, “This fossil represents a species at the midpoint along the evolutionary journey of bird cognition.” “Its cognitive abilities may have given Navaornis an advantage when it came to finding food or shelter, and it may have been capable of elaborate mating displays or other complex social behaviour.”

Despite being a major accomplishment, the researchers claim the discovery is just the beginning of their understanding of how avian intelligence evolved. How Navaornis interacts with its surroundings may be revealed by future research, which could assist address more general queries regarding the historical development of bird cognition.

Field’s research team has been describing four Mesozoic fossil birds since 2018, including Janavis, Ichthyornis, and Asteriornis (the “Wonderchicken”). Navaornis is the most recent of these birds. By combining cutting-edge visualization and analytical techniques with new fossil findings, the team has uncovered important new information about the origins of birds, the most varied group of vertebrate animals still in existence.

The study was partially funded by UKRI, or UK Research and Innovation. Daniel Field attends Cambridge’s Christ’s College as a Fellow.

Continue Reading

Science

Exosonic, a Startup, Experiences a Supersonic Explosion Before Failing

Published

on

The announcement by civilian supersonic startup Exosonic that it is going out of business due to its inability to acquire necessary funding is another illustration of the huge upheaval occurring in the cutting-edge aerospace industry.

Any technological field that experiences a boom goes through several stages, some of which can be quite unpleasant for individuals engaged. I had the good fortune to be writing contracts in Seattle, Washington, which was the core of the internet explosion in the late 1990s.

The pastel maxi-scooters from Harley-Davidson promise unmatched power.
In those days, businesses would appear like mushrooms in a park during an autumn rainstorm. Suddenly, a new firm would occupy every available office space, furnishing it with expensive furniture and paying even more to hire employees. It was highly intoxicating, akin to seeing a gold rush. But by 2000, the boom had turned to crash, with the startups disappearing as fast as the figurative mushrooms, leaving just the most resilient.

As the competitors to profit from new developments are pushed aside, a similar shakedown is presently taking place in the more inventive sectors of the aircraft industry. Exosonic, situated in Torrance, California, has joined the ranks of hypersonic engine manufacturer Reaction Engines and eVTOL taxi startup Lilium that have already filed for bankruptcy.

After the collapse of the Concorde, aerospace engineer Norris Tie founded Exospace in 2019 with the goal of creating the next generation of civilian supersonic aircraft. Tie had previously worked at Lockheed Martin and Northrop Grumman. They were somewhat successful, obtaining contracts with the US Air Force to develop supersonic training drones and raising US$6.5 million in finance.

As the competitors to profit from new developments are pushed aside, a similar shakedown is presently taking place in the more inventive sectors of the aircraft industry. Exosonic, situated in Torrance, California, has joined the ranks of hypersonic engine manufacturer Reaction Engines and eVTOL taxi startup Lilium that have already filed for bankruptcy.

After the collapse of the Concorde, aerospace engineer Norris Tie founded Exospace in 2019 with the goal of creating the next generation of civilian supersonic aircraft. Tie had previously worked at Lockheed Martin and Northrop Grumman. They were somewhat successful, obtaining contracts with the US Air Force to develop supersonic training drones and raising US$6.5 million in finance.

“To all that stayed updated on our journey, we thank you for your support and shared love for our company’s vision and mission,” stated Exosonic in a statement. “For those that continue to be in the race, such as Boom Supersonic, Hermeus, Destinus, Venus Aerospace, Spectre Aerospace, and others, we wish you the best on your super/hypersonic campaigns. We will be rooting for you from the sidelines.”

Continue Reading

Science

SpaceX will launch 24 Starlink satellites from Florida on Monday

Published

on

SpaceX is scheduled to launch 24 more Starlink broadband satellites from the Space Coast of Florida on Monday, November 11.

From Cape Canaveral Space Force Station, a Falcon 9 rocket carrying the Starlink spacecraft is set to launch Monday within a four-hour window that begins at 4:02 p.m. EST (2102 GMT). Due to “unfavorable recovery weather conditions,” SpaceX had to postpone the launch, which was initially scheduled for Sunday evening.

Starting approximately five minutes prior to liftoff, SpaceX will broadcast the launch live on X.

Eight minutes after takeoff, assuming everything goes according to plan, the Falcon 9’s first stage will return to Earth for a vertical touchdown on the droneship “A Shortfall.”

Meanwhile, the 24 Starlink satellites will continue to be carried by the upper stage of the Falcon 9 to low Earth orbit (LEO), where they will be deployed around 65 minutes following liftoff.

The launch on Monday comes after another Starlink mission took off early Saturday morning from Vandenberg Space Force Base in California.

Continue Reading

Trending

error: Content is protected !!