Connect with us

Science

Alien Life may be Hiding Beneath the Shield of Ice on Mars, According to a Study

Published

on

According to recent research, dusty ice in the Red Planet’s mid-latitudes may be covering the conditions necessary for photosynthesis to take place on Mars.

The process of photosynthesis is how cyanobacteria, algae, and plants produce chemical energy. In order to continue, it needs light and water, and it produces most of the oxygen in the atmosphere. According to the latest research, Mars may be able to create “radiative habitable zones”—zones where a thick enough covering of ice would block off the sun’s harmful radiation while still allowing enough light to support photosynthesis.

These findings need to be interpreted in the correct context, much as photosynthesis requires the ideal amount of light to occur. The findings do not imply that life has ever existed on Mars or exists now, but they do provide scientists conducting the ongoing search with a direction to search.

The “habitable zone” is the area surrounding a star where conditions are favorable for liquid water to exist on a planet’s surface, and this includes both Earth and Mars. Mars seems to be a largely dry landscape, despite the fact that 71% of Earth’s surface is covered in oceans with liquid water.

It has been revealed by observations made by Mars missions like the Curiosity and Perseverance rovers that this was not always the case. These robots’ explorations of geological features like dried lake basins and river tributaries suggest that liquid water once flowed across the Red Planet’s landscapes billions of years ago. Furthermore, water ice has been discovered on Mars by orbiting missions like NASA’s Mars Reconnaissance Orbiter (MRO), frequently in unexpected places.

Scientists believe that Mars’ atmosphere was mostly stripped away and its magnetic field burnt out billions of years ago, whence Earth’s magnetosphere still exists. This implied that not much could be done to stop water from evaporating and vanishing into space. Due to its thin atmosphere, modern Mars is also subjected to the sun’s intense UV radiation, which is lethal to life and breaks down the intricate molecules required for it.

“Unlike Earth, Mars lacks a protective ozone shield, so there is 30% more harmful ultraviolet radiation at the surface in comparison with our planet,” Khuller stated. “Thus, on Mars, the areas where photosynthesis could occur are more likely to be within dusty ice because the overlying dusty ice blocks the harmful ultraviolet radiation at Mars’ surface, and liquid water is highly unstable at the surface of Mars due to its dry atmosphere.”

The scientists discovered through computer simulations that the shallow liquid water beneath the surface of dusty Mars ice can melt from within, shielded from evaporating into the dry Martian atmosphere by the ice covering it.

“So, the two key ingredients for photosynthesis can be present within dusty Martian ice in the mid-latitudes,” Khuller stated. “For photosynthesis to take place, there must be sufficient sunlight and liquid water. Previous independent models of dense Martian snow have shown that if dust particles (less than 1 percent) are present in the snow, melting below the surface can still happen in the Martian mid-latitudes today.

“By discovering dusty ice exposed within buried dusty snowpacks associated with Martian gullies a few years ago, there is a mechanism for them to melt below the surface to form shallow subsurface liquid water.”

According to Khuller, the researchers discovered that the surrounding ice can shield the exposed dusty ice from the damaging UV rays that reach the surface of Mars. Additionally, enough sun energy can pass through this ice below the surface to support photosynthesis.

The concentration of dust in the ice determines the depths at which these radiative habitable zones are found. According to the team’s models, ice that is very dusty would obstruct too much light. On the other hand, a radiative zone might occur in ice containing 0.01% to 0.1% dust at a depth of 2 to 15 inches (5 to 38 centimeters). At a depth of seven to ten feet (2.2 to 3.1 meters), a wider and deeper radiative zone would be possible with less “polluted” ice.

The team believes that a lack of subsurface melting would make the polar regions of Mars, where most of the planet’s ice is found, too cold for these radiative habitable zones to exist. The Red Planet’s mid-latitude regions would be more prone to experience this kind of melting.

The observable evidence that the team has gathered comes from Earth rather than Mars, lending some credence to their theory.

“I was surprised to find out that there are potentially similar analogs for life within ice on Earth that contains dust and sediment,” Khuller said. “These are called ‘cryoconite holes’ and form when dust and sediment on top of the ice melt into the ice because it is darker than the ice.”

The study went on to say that every summer, even though the ice above is frozen, liquid water forms surrounding the black dust within the ice as a result of heating from sunshine. This occurs as a result of the ice’s transparency, which lets light through below the surface.

“People have found microorganisms that live in these shallow subsurface habitats on Earth,” Khuller stated. “The microorganisms typically go dormant in the winter when there is not enough sunlight to form liquid water within the dusty ice.”

Naturally, none of this suggests that there is or ever was photosynthetic life on Mars. However, it’s exciting and might encourage more research into the possibility that the Red Planet has subterranean radiative livable zones.

“I am working with a team of scientists to develop improved simulations of if, where, and when dusty ice could be melting on Mars today,” Khuller said. “Additionally, we are recreating some of these dusty ice scenarios in a lab setting to examine them in more detail.”

Science

Researchers Achieve Breakthrough in Quantum Simulation of Electron Transfer

Published

on

A team at Rice University has achieved a significant breakthrough in simulating molecular electron transfer using a trapped-ion quantum simulator. Their research offers fresh insights into the dynamics of electron transfer and could pave the way for innovations in molecular electronics, renewable energy, and cc.

Electron transfer is a critical process underpinning numerous physical, chemical, and biological phenomena. However, the complexity of quantum interactions has long made it a challenging area to study. Conventional computational techniques often struggle to capture the full range of variables influencing electron transfer.

To address these challenges, the researchers developed a programmable quantum system capable of independently controlling key factors such as donor-acceptor energy gaps, electronic and vibronic couplings, and environmental dissipation. Using ions trapped in an ultra-high vacuum and manipulated by laser light, the team demonstrated real-time spin dynamics and measured electron transfer rates.

“This is the first time that this kind of model has been simulated on a physical device while incorporating the role of the environment and tailoring it in a controlled way,” said Guido Pagano, lead author of the study published in Science Advances.

Pagano added, “It represents a significant leap forward in our ability to use quantum simulators to investigate models and regimes relevant to chemistry and biology. By harnessing the power of quantum simulation, we hope to explore scenarios currently inaccessible to classical computational methods.”

Through precise engineering of tunable dissipation and programmable quantum systems, the researchers explored both adiabatic and nonadiabatic regimes of electron transfer. The experiment not only illuminated how quantum effects function under diverse conditions but also identified optimal parameters for electron transfer.

The team emphasized that their findings bridge a critical gap between theoretical predictions and experimental verification. By offering a tunable framework to investigate quantum processes in complex systems, their work could lead to groundbreaking advancements in renewable energy technologies, molecular electronics, and the development of novel materials.

“This experiment is a promising first step toward understanding how quantum effects influence energy transport, particularly in biological systems like photosynthetic complexes,” said Jose N. Onuchic, study co-author. “The insights gained could inspire the design of more efficient light-harvesting materials.”

Continue Reading

Science

Crew Dragon Mission Delay Extends Astronauts’ Stay on ISS by a Month

Published

on

The next mission of SpaceX’s Crew Dragon to the International Space Station (ISS) has been postponed by a month due to delays in completing a new spacecraft. This decision will extend the stay of some astronauts aboard the ISS, including two who have been there since June.

NASA announced on December 17 that the Crew-10 mission, initially scheduled for February, is now set to launch no earlier than late March. The delay stems from the need for additional time to finish the fabrication, assembly, testing, and integration of a new Crew Dragon capsule.

Crafting the New Dragon Capsule

“Fabrication, assembly, testing, and final integration of a new spacecraft is a painstaking endeavor that requires great attention to detail,” said Steve Stich, NASA’s Commercial Crew Program Manager. He commended SpaceX’s efforts to expand the Dragon fleet and the flexibility of the ISS crew in accommodating the delay.

The new Crew Dragon will be the fifth in SpaceX’s lineup of crewed spacecraft, complementing its three cargo Dragon vehicles. According to Sarah Walker, SpaceX’s Dragon Mission Management Director, the spacecraft was near completion as of July and was undergoing final work at SpaceX’s California facility. It is now expected to arrive in Florida for final preparations in January.

While NASA did not specify the exact reasons for the delay, it considered other options, including using an existing Crew Dragon or making adjustments to the launch manifest, before opting for the delay. Existing capsules, including Freedom, currently at the ISS, and Endeavour and Resilience, which recently returned from other missions, were not available for a February launch.

Crew Adjustments and Extended ISS Stay

The Crew-10 mission will proceed with its planned roster: Anne McClain and Nichole Ayers from NASA, Takuya Onishi from JAXA, and Kirill Peskov from Roscosmos.

The delay has implications for the Crew-9 mission, launched in late September with NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov. They were joined by NASA astronauts Suni Williams and Butch Wilmore, who have been on the station since June after arriving on Boeing’s CST-100 Starliner.

Originally, Williams and Wilmore were scheduled to stay for just over a week, but their time on the ISS will now extend to about 10 months. NASA had earlier decided to return the uncrewed Starliner to Earth due to concerns with its thrusters.

Despite the delay, NASA emphasizes that Williams and Wilmore are not “stranded” as they can return to Earth in an emergency. Their extended stay is tied to the decision to use the new Crew Dragon for the upcoming mission, as preparing another vehicle was deemed impractical.

Looking Ahead

Assuming the Crew-10 launch proceeds in late March, the Crew-9 spacecraft is expected to return to Earth in early April after a handover period. This delay underscores the complexity of preparing new spacecraft while ensuring the safety and readiness of all missions.

As the new Crew Dragon nears completion, SpaceX and NASA remain focused on maintaining seamless operations aboard the ISS and advancing human space exploration.

Continue Reading

Science

Boeing Starliner crews will have an extended stay on the ISS due to SpaceX’s delay

Published

on

NASA said on Tuesday that it has decided to postpone the launch until at least late March because SpaceX’s upcoming crew rotation mission to the ISS would utilize a new Dragon spacecraft that won’t be ready by the initial February launch date.

For the two NASA astronauts who traveled to the ISS last June on Boeing’s troubled Starliner spacecraft, that means an even longer stay. On June 5, they took off from Cape Canaveral, Florida, aboard a United Launch Alliance Atlas V on the first crewed mission of Starliner. They arrived at the ISS one day later for a stay that was only expected to last eight days.

NASA decided to be cautious and maintain Butch Wilmore and Suni Williams aboard the ISS while sending Starliner home without a crew due to issues with the spacecraft’s thrusters and helium leaks on its propulsion module.

In order for Williams and Wilmore to have a trip home, they will now be traveling on the SpaceX Crew Dragon Freedom, which traveled up to the ISS and docked in September, although with only two crew members on board rather than the customary four.

When Crew-10 arrived in late February, the mission’s goal was to take a trip home.

However, NASA confirmed that Crew-10 will not fly with its replacement crew until late March. This allows NASA and SpaceX time to prepare the new Dragon spacecraft, which has not yet been given a name, for the voyage. Early January is when it is anticipated to reach Florida.

“Fabrication, assembly, testing, and final integration of a new spacecraft is a painstaking endeavor that requires great attention to detail,” stated Steve Stich, the program manager for NASA’s Commercial Crew. “We appreciate the hard work by the SpaceX team to expand the Dragon fleet in support of our missions and the flexibility of the station program and expedition crews as we work together to complete the new capsule’s readiness for flight.”

It would be the fifth Dragon spacecraft with a crew. Its fleet of four current Dragon spacecraft has flown 15 times, sending 56 passengers to space, including two who were two-time fliers. The first crewed trip took place in May 2020. Each spacecraft’s name is chosen by the crew on its first flight.

According to NASA, teams considered using the other crew Dragon spacecraft that were available but decided that rescheduling Crew-10’s launch date was the best course of action.

JAXA (Japan Aerospace Exploration Agency) astronaut and mission specialist Takuya Onishi will undertake his second spaceflight, Roscosmos cosmonaut and mission specialist Kirill Peskov will make his first spaceflight, NASA astronaut and commander Anne McClain will make her second spaceflight, and NASA astronaut and pilot Nichole Ayers will become the first member of the 2021 astronaut candidate class to reach space.

Given that Crew-9 won’t be able to return home until a handover period following Crew-10’s arrival, Wilmore and Williams may have to spend nearly nine months aboard as a result of the delay.

Rotations aboard the ISS typically last six months.

It is unclear when and how Starliner will receive its final certification so that it can start trading off the regular ferry service with SpaceX, as NASA’s Commercial Crew Program aims to have two providers for U.S.-based rotation missions with SpaceX and Boeing. This is due to the Crew Flight Test mission’s incomplete launch.

According to the terms of its contract, Boeing must deliver six missions to the ISS before the space station’s service ends, which is presently scheduled for 2030.

Continue Reading

Trending

error: Content is protected !!