Connect with us

Science

Boeing says careful testing would have gotten Starliner programming issues

Published

on

The program supervisor responsible for Boeing’s Starliner team container program said Friday that extra checks would have revealed issues with the spaceship’s product that tormented the specialty’s first unpiloted orbital practice run in December, however he pushed back against proposals that Boeing engineers took alternate routes during ground testing.

Boeing missed a couple of programming mistakes during the Starliner’s Orbital Flight Test. One kept the shuttle from docking with the International Space Station, and the other could have brought about cataclysmic harm to the case during its arrival to Earth.

The two mistakes could have been gotten before dispatch if Boeing had performed progressively exhaustive programming testing on the ground, as per John Mulholland, VP and chief of Boeing’s CST-100 Starliner program.

Mulholland said Boeing engineers performed testing of Starliner’s product in pieces, with each test concentrated on a particular section of the mission. Boeing didn’t play out a start to finish trial of the whole programming suite, and at times utilized subs, or emulators, for flight PCs.

“We are committing once again ourselves to the order expected to test and qualify our items,” Mulholland said Friday in a telephone call with columnists. “The Boeing group is focused on the accomplishment of the Starliner program, and we are investing the effort and the assets to push ahead.”

The Orbital Flight Test, or OFT, in December was proposed to show the Starliner’s presentation in space just because in front of the container’s first trip with space explorers this year. The issues that tormented the OFT strategic power Boeing and NASA to design a second unpiloted dry run before proceeding onward to a manned crucial.

Authorities have not chosen whether another computerized dry run may be required, or said when the Starliner may fly in space once more.

Boeing built up the Starliner rocket under agreement to NASA, which is trying to end its sole dependence on Russian Soyuz group containers to ship space explorers to and from the space station. NASA granted Boeing a $4.2 billion agreement and SpaceX got a $2.6 billion arrangement in 2014 to finish improvement of the Starliner and Crew Dragon spaceships.

The Crew Dragon finished an effective unpiloted practice run to the space station in March 2019, and afterward showed the case’s in-flight dispatch prematurely end ability in January. Last arrangements are in progress for the primary Crew Dragon trip with space travelers ready, which could take off when May.

After the OFT crucial insufficient testing, Boeing’s architects are looking at each line of Starliner programming to guarantee groups didn’t miss whatever other mistakes that went undetected during the rocket’s December practice run.

“Knowing the past revealed a few the issues, yet I truly don’t need you or anybody to have the feeling that this group attempted to take alternate ways,” Mulholland said. “They didn’t. They did a wealth of testing, and in specific territories, clearly, we have holes to go fill. In any case, this is an inconceivably gifted and solid group.”

One of the product issues was quickly clear after the Starliner’s in any case fruitful rising into space Dec. 20 from Cape Canaveral on board a United Launch Alliance Atlas 5 rocket. A strategic clock on the container had an off-base setting, making the rocket miss an arranged motor terminating not long after isolating from the Atlas 5’s Centaur upper stage.

The circle inclusion consume was required to infuse the Starliner case into a steady circle and start its quest for the space station. After the robotized grouping flopped due to the on-board clock setting, ground controllers at NASA’s Johnson Space Center in Houston needed to uplink manual directions for the Starliner shuttle to play out the circle addition consume, however the boat consumed an excessive amount of fuel during the procedure, leaving inadequate force to meet and dock with the space station.

Ground groups in a difficult situation setting up a steady correspondences interface with the Starliner when they endeavored to send directions for the circle addition consume, further deferring the beginning of the move. Boeing says ground groups had issues associating with the shuttle on in excess of 30 extra events during the Starliner’s two-day dry run.

With a docking to the space station no longer conceivable, crucial cut off the Starliner experimental drill and focused on an arrival of the case at White Sands Space Harbor.

After the strategic issue, Boeing engineers looked into different sections of the Starliner’s product code to scan for other issue zones. They revealed another product blunder that was missed in pre-flight testing, which could have made the Starliner’s administration module hammer into the specialty’s group module after the boat’s two components isolated not long before reemergence into the climate.

Controllers sent a product fix to the Starliner shuttle to determine the potential issue before it played out a deorbit consume to target arriving in New Mexico.

Mulholland said Friday that progressively broad testing before the Starliner experimental drill would have uncovered the product blunders.

Designers followed the crucial time issue to a coding mistake that caused the Starliner shuttle recover an inappropriate time from the Atlas 5 rocket’s flight control framework. The Starliner set its inside timekeepers dependent on a period caught from the Atlas 5’s PC hours before dispatch, when it ought to have recovered the time from the dispatch vehicle in the terminal commencement.

Joint programming reproductions among Boeing and ULA concentrated distinctly on the dispatch arrangement, when the Starliner shuttle is appended to the Atlas 5 rocket. The reproductions finished at the hour of the container’s sending from the launcher, yet testing would have uncovered the planning blunder if the reenactments proceeded through the hour of the circle inclusion consume, which was booked to happen around a half-hour after liftoff.

“If we had run that integrated test for a number of minutes longer, it would have uncovered the issue,” Mulholland said.

“I think the sensitivity of this mission elapsed time was not recognized by the team and wasn’t believed to be an important aspect of the mission, so ideally we would have run that (software test) through at least … the first orbital insertion burn,” Mulholland said. “So from a hindsight standpoint, I think it’s very easy to see what we should have done because we uncovered an error.

“If we would have run the integrated test with ULA through the first orbital insertion burn timeframe, we would have seen that we would have missed the orbital insertion burn because the timing was corrupt,” they said. “When we got to that point in time, the software believed that the burn had happened many hours before, so it didn’t do the burn.”

Mulholland said Boeing groups thought it was progressively sensible to break the Starliner crucial into pieces, and run programming testing on each portion of the flight.

“At the point when you do a solitary run from dispatch to docking, that is a 25 or more hour single run in the PC,” they said.

“The group, at that point, concluded that they would have various trial of various pieces of the mission,” Mulholland said. “It was anything but an issue at all of the group deliberately shortcutting, or not doing what they accepted was suitable.”

Before each future Starliner crucial, will run longer tests in programming mix labs enveloping all occasions from dispatch through docking with the space station, at that point from undocking through arriving, as per Mulholland.

Mulholland said increasingly exhaustive testing could have likewise uncovered the mis-arranged programming expected to securely discard the Starliner’s administration module before reemergence. Without a product fix, the administration module, or drive component, could have smashed go into the group module after partition, harming the boat’s warmth shield, or more regrettable.

A drive controller is liable for planning engine consumes on the administration module to guarantee it doesn’t recontact the group module after detachment, which happens after the Starliner’s deorbit consume and before reemergence.

The administration module is intended to wreck in the climate, while the reusable group module plummets back to Earth ensured by a warmth shield.

The impetus controller on the Starliner administration module depends on a plan utilized by another program, and its product was inappropriately designed for the administration module’s removal consume in the wake of isolating from the team module, Mulholland said. The drive controller had an off-base “stream map,” which contains data about the administration module’s engines and valves.

The Starliner utilizes two diverse fly maps: One when the whole rocket is associated — when the group module PCs order engine firings — and another for the removal consume after the administration module is casted off.

“The main thing that was gotten was the one fly guide for the coordinated shuttle, and we missed the stream map that was required for the administration after division,” Mulholland said.

They said programming testing for the impetus controller utilized an emulator, or a reproduced segment, as opposed to the genuine controller proposed to fly on the Starliner shuttle. When Boeing ran the product reenactment, the genuine drive controller was being utilized for test-firings of the administration module engines in New Mexico.

Matthew Ronald grew up in Chicago. His mother is a preschool teacher, and his father is a cartoonist. After high school Matthew attended college where he majored in early-childhood education and child psychology. After college he worked with special needs children in schools. He then decided to go into publishing, before becoming a writer himself, something he always had an interest in. More than that, he published number of news articles as a freelance author on apstersmedia.com.

Science

China’s Tianwen-2 Set for Launch to Asteroid and Comet

Published

on

China’s Tianwen-2 Set for Launch to Asteroid and Comet

China has taken a major step forward in its deep-space exploration efforts as the Tianwen-2 spacecraft arrived at the Xichang Satellite Launch Center in Sichuan province for final launch preparations. The China National Space Administration (CNSA) confirmed the development on February 20, 2025, signaling that the mission is on track for its scheduled launch in the first half of the year.

A Dual-Purpose Mission

The Tianwen-2 mission is a combined near-Earth asteroid sample return and comet rendezvous mission, marking another ambitious endeavor for China’s space program. The mission is set to launch aboard a Long March 3B rocket, with a tentative liftoff expected around May 2025.

The primary target of Tianwen-2 is the near-Earth asteroid Kamoʻoalewa (2016 HO3), a small celestial body with a diameter estimated between 40 to 100 meters. The asteroid is considered a quasi-satellite of Earth, meaning it follows a co-orbital path with our planet. Scientists believe Kamoʻoalewa might be a fragment of the Moon, ejected into space after an ancient impact event.

After collecting samples from Kamoʻoalewa, the main spacecraft will continue its journey to comet 311P/PANSTARRS, a celestial body that exhibits both asteroid-like and comet-like characteristics. By studying these two objects, scientists aim to gain valuable insights into the composition, evolution, and history of the solar system, including the distribution of water and organic molecules.

Launch Preparations Underway

CNSA stated that the launch site facilities are fully prepared, and pre-launch tests are proceeding as planned. Engineers and scientists are meticulously working to ensure the spacecraft is ready for its complex mission, which will involve multiple orbital maneuvers, sample collection, and deep-space travel over nearly a decade.

Sampling Kamoʻoalewa: Two Innovative Techniques

To collect material from Kamoʻoalewa, Tianwen-2 will employ two advanced sampling methods:

  1. Touch-and-Go (TAG) Method – This technique, used by NASA’s OSIRIS-REx and JAXA’s Hayabusa2 missions, involves briefly touching the asteroid’s surface to gather samples.
  2. Anchor-and-Attach System – This approach uses drills attached to the spacecraft’s landing legs, allowing for a more stable and secure extraction of subsurface material.

Early mission concepts, when Tianwen-2 was initially known as Zheng He, indicated that China aimed to collect between 200 and 1,000 grams of asteroid samples. These samples will help scientists analyze Kamoʻoalewa’s mineral composition, origin, and potential similarities with lunar material.

Challenges in Sample Return

Although China has successfully executed two lunar sample return missions—Chang’e-5 (2020) and Chang’e-6 (2024)—returning asteroid samples presents unique challenges. Unlike the Moon, Kamoʻoalewa has negligible gravity, requiring specialized landing and sampling techniques. Additionally, the reentry module carrying the samples will experience higher velocities, demanding advanced thermal protection and parachute deployment systems.

To address these challenges, the China Aerospace Science and Technology Corporation (CASC) conducted high-altitude parachute tests in 2023, ensuring the safe return of asteroid samples to Earth around 2027.

Comet Rendezvous: Studying 311P/PANSTARRS

Returning samples from Kamoʻoalewa will not mark the end of Tianwen-2’s mission. The spacecraft will execute a gravitational slingshot maneuver around Earth, propelling it toward comet 311P/PANSTARRS in the main asteroid belt. The rendezvous is expected around 2034.

311P/PANSTARRS is considered a transitional object between asteroids and comets, making it an ideal candidate for studying the origins of cometary activity within the asteroid belt. Scientists hope to analyze its orbit, rotation, surface composition, volatile elements, and dust emissions, shedding light on the evolution of comets in the inner solar system.

Scientific Instruments on Board

The Tianwen-2 spacecraft is equipped with a suite of cutting-edge instruments to study its targets, including:

  • Multispectral and infrared spectrometers – To analyze surface composition.
  • High-resolution cameras – To map geological features in detail.
  • Radar sounder – To probe subsurface structures.
  • Magnetometer – To search for residual magnetic fields.
  • Dust and gas analyzers – To examine cometary activity.
  • Charged particle detectors – To study interactions with the solar wind (developed in collaboration with the Russian Academy of Sciences).

China’s Expanding Deep-Space Ambitions

Tianwen-2 follows the highly successful Tianwen-1 Mars mission, which saw China land the Zhurong rover on Mars in 2021. The Tianwen series is a key part of China’s growing presence in deep-space exploration:

  • Tianwen-3 – A Mars sample return mission, scheduled for 2028–2030.
  • Tianwen-4 – A Jupiter system exploration mission, launching around 2030, featuring a solar-powered orbiter for Callisto and a radioisotope-powered spacecraft for a Uranus flyby.

Chinese researchers have emphasized the importance of asteroid sample return missions, citing their potential for groundbreaking scientific discoveries and the development of new space technologies.

With Tianwen-2, China is taking a bold step into the future of deep-space exploration. By returning samples from an asteroid and studying a comet, the mission will provide crucial insights into the origins of the solar system and planetary evolution. As launch preparations continue, the world eagerly anticipates another milestone in China’s space program.

Continue Reading

Science

SpaceX to Launch 21 Starlink Satellites from Florida on February 4

Published

on

SpaceX to Launch 21 Starlink Satellites from Florida on February 4

SpaceX plans to launch another batch of Starlink satellites into orbit from Florida’s Space Coast on February 4, 2025. The mission will deploy 21 Starlink satellites, including 13 equipped with direct-to-cell communications capabilities, marking another major step in SpaceX’s ambitious plan to provide global high-speed internet coverage.

The Falcon 9 rocket flight from Cape Canaveral Space Force Station is scheduled to take place during a roughly three-hour launch window that opens at 3:37 a.m. (0837 GMT). SpaceX will livestream the event on its X account (formerly Twitter), with coverage beginning about five minutes before liftoff.

The mission will use the experienced Falcon 9 first-stage rocket, which will be making its 21st launch and landing. According to SpaceX, this rocket has already flown on 20 missions, 16 of which were dedicated Starlink launches. If all goes as planned, the rocket will return to Earth about eight minutes after liftoff, landing on the unmanned “Just Read the Instructions” craft in the Atlantic Ocean.

The Falcon 9 upper stage will continue its journey to deploy 21 Starlink satellites into low Earth orbit (LEO) about 65 minutes after liftoff. This will be SpaceX’s 15th Falcon 9 mission in 2025, with nine flights dedicated to expanding the Starlink constellation.

Direct-to-cell capabilities


A notable feature of this mission is the inclusion of 13 Starlink satellites with direct-to-cell capability. These advanced satellites are designed to enable seamless connectivity for standard mobile phones, eliminating the need for specialized hardware. This technology has the potential to revolutionize communications in remote and underserved areas, providing reliable internet and cellular services directly to users’ devices.

The growing Starlink constellation


SpaceX is rapidly expanding its Starlink network, which is already the largest satellite constellation ever assembled. In 2024 alone, the company launched more than 130 Falcon 9 missions, about two-thirds of which were dedicated to Starlink deployments. According to astrophysicist and satellite tracker Jonathan McDowell, SpaceX currently operates nearly 7,000 Starlink satellites in LEO.

The Starlink network aims to provide high-speed, low-latency internet access to users around the world, especially in regions lacking traditional infrastructure. With this latest launch, SpaceX is expanding the network’s capacity and coverage, bringing its dream of global connectivity closer to reality.

Recyclability and sustainability


The Falcon 9 rocket’s first-stage booster exemplifies SpaceX’s commitment to reusability, a key factor in reducing the cost of spaceflight. By successfully landing and reusing the rocket, SpaceX has revolutionized the aerospace industry and set a new standard for sustainable space operations.

However, the rapid expansion of the Starlink constellation has raised concerns among astronomers and environmentalists. The growing number of satellites in LEO has created problems such as light pollution, which can interfere with astronomical observations, and space debris, which poses a threat to other spacecraft. SpaceX is actively working to mitigate these issues by implementing measures such as blacking out satellite surfaces and responsibly deorbiting inactive satellites.

The February 4 launch is part of SpaceX’s broader strategy to achieve global internet coverage and support its growing customer base. With the addition of direct-to-cell-connect satellites, the company is poised to offer even more versatile and simple connectivity solutions.

As SpaceX pushes the boundaries of space technology, the world will be watching to see how the Starlink network evolves and addresses the challenges associated with large-scale satellite constellations. For now, the focus is on the upcoming launch, which will mark another milestone in SpaceX’s journey to connect the world.

Continue Reading

Science

Scientists Trap Molecules for Quantum Tasks, Paving the Way for Ultra-Fast Tech Advancements

Published

on

Scientists Trap Molecules for Quantum Tasks, Paving the Way for Ultra-Fast Tech Advancements

In a groundbreaking milestone for quantum computing, researchers from Harvard University have successfully trapped molecules to perform quantum operations. This achievement marks a pivotal advancement in the field, potentially revolutionizing technology and enabling ultra-fast computations in medicine, science, and finance.

Molecules as Qubits: A New Frontier

Traditionally, quantum computing has focused on using smaller, less complex particles like ions and atoms as qubits—the fundamental units of quantum information. Molecules, despite their potential, were long considered unsuitable due to their intricate and delicate structures, which made them challenging to manipulate reliably.

However, the latest findings, published in the journal Nature, change this narrative. By utilizing ultra-cold polar molecules as qubits, the researchers have opened up new possibilities for performing quantum tasks with unprecedented precision.

A 20-Year Journey to Success

“This is a breakthrough we’ve been working toward for two decades,” said Kang-Kuen Ni, Theodore William Richards Professor of Chemistry and Physics at Harvard and senior co-author of the study.

Quantum computing leverages the principles of quantum mechanics to perform calculations exponentially faster than classical computers. It has the potential to solve problems that were once deemed unsolvable.

“Our work represents the last critical piece needed to construct a molecular quantum computer,” added co-author and postdoctoral fellow Annie Park, highlighting the significance of this achievement.

How Molecular Quantum Gates Work

Quantum gates, the building blocks of quantum operations, manipulate qubits by taking advantage of quantum phenomena like superposition and entanglement. Unlike classical logic gates that process binary bits (0s and 1s), quantum gates can process multiple states simultaneously, exponentially increasing computational power.

In this experiment, the researchers used the ISWAP gate, a crucial component that swaps the states of two qubits while applying a phase shift. This process is essential for creating entangled states—a cornerstone of quantum computing that allows qubits to remain correlated regardless of distance.

Overcoming Long-Standing Challenges

Earlier attempts to use molecules for quantum computing faced significant challenges. Molecules were often unstable, moving unpredictably and disrupting the coherence required for precise operations.

The Harvard team overcame these obstacles by trapping molecules in ultra-cold environments. By drastically reducing molecular motion, they achieved greater control over quantum states, paving the way for reliable quantum operations.

The breakthrough was a collaborative effort between Harvard researchers and physicists from the University of Colorado’s Center for Theory of Quantum Matter. The team meticulously measured two-qubit Bell states and minimized errors caused by residual motion, laying the groundwork for even more accurate future experiments.

Transforming the Quantum Landscape

“There’s immense potential in leveraging molecular platforms for quantum computing,” Ni noted. The team’s success is expected to inspire further innovations and ideas for utilizing the unique properties of molecules in quantum systems.

This advancement could significantly alter the quantum computing landscape, bringing researchers closer to developing a molecular quantum computer. Such a system would harness the unique capabilities of molecules, opening doors to unprecedented computational possibilities.

The Road Ahead

The implications of this achievement extend far beyond academia. By unlocking the potential of molecules as qubits, the researchers have taken a vital step toward creating powerful quantum computers capable of transforming industries ranging from pharmaceuticals to financial modeling.

As researchers continue to refine this technology, the dream of a molecular quantum computer—one that capitalizes on the complexities of molecular structures—moves closer to reality. This breakthrough represents not just a leap forward for quantum computing but a glimpse into the future of technology itself.

Continue Reading

Trending

error: Content is protected !!