Connect with us

Science

Scientists Suggest that Surprisingly Recently, Denisovans Lived on the Tibetan Plateau

Published

on

A new study that expands scientific knowledge of the mysterious ancient humans initially discovered in 2010 indicates that Denisovans lived and prospered on the high-altitude Tibetan plateau for over 100,000 years.

Thousands of animal bone fragments that were discovered at Baishiya Karst Cave, 3,280 meters above sea level, close to the Chinese city of Xiahe in Gansu province—one of only three locations where it is known that extinct humans formerly resided—were examined by researchers. According to their research, Denisovans were able to hunt, kill, and prepare a variety of large and small animals, including as birds, woolly rhinoceros, blue sheep, wild yaks, and marmots.

The rib bone fragment, the oldest of the few known Denisovan fossils, was found by the archaeology team at the cave in a layer of sediment that dates back between 48,000 and 32,000 years. This discovery suggests that the species was more recent than previously believed.

The lack of fossil evidence has left us with few details about the lives of these prehistoric human forebears. However, the new research shows that the Denisovans who inhabited Baishiya Karst Cave were extraordinarily hardy, managing to thrive in one of the harshest habitats on Earth during both warmer and colder seasons while making the most of the variety of animal resources found in the grassland area.

“We know that the Denisovans lived, occupied the cave and this Tibetan plateau for such a long time, we really want to know, how did they live there? How did they adapt to the environment?” stated Dongju Zhang, a co-lead author of the study that was published in the journal Nature on Wednesday and an archaeologist and professor at Lanzhou University in China.

Zhang continued, “They used all these animals available to them, so that means their behavior is flexible,”

According to research coauthor Frido Welker, an associate professor at the University of Copenhagen’s Biomolecular Paleoanthropology Group at the Globe Institute, the rib belonged to Denisovan, who most likely lived at the period when modern humans were spreading throughout the Eurasian continent. He noted that more studies in the area and at the location might clarify whether or not the two groups interacted there.

He found it fascinating that “it does put this fossil and the (sediment) layer in a context where we know in the wider region humans were likely to be present.”

A Series of Hints from Denisovan

DNA sequences taken from a little piece of finger bone were used in a lab setting to identify Denisovans for the first time a little over ten years ago. Less than a dozen Denisovan fossils have been discovered globally since then.

The majority of them were discovered in Denisova Cave in the Siberian Altai Mountains, which is how the group earned its name. Subsequent genetic studies demonstrated that Denisovans and Neanderthals had interbred with contemporary humans. Denisovan DNA traces discovered in modern humans imply that the extinct species most likely once inhabited most of Asia.

But it wasn’t until 2019 that scientists discovered the first Denisovan fossil outside of the cave with the same name.

At least 160,000 years ago, a monk discovered a jawbone with teeth at Baishiya Karst Cave, a sacred site for Tibetan Buddhists. The jawbone had a Denisovan molecular signature. More proof that Denisovans had formerly lived in the region was provided by the discovery of DNA from silt at the location, which was reported a year later.

Scientists discovered a tooth in a Laos cave that they recognized as belonging to the Denisovan species in 2022. This discovery put the species for the first time in Southeast Asia. Since it was not possible to extract DNA from the tooth, as was the case with the jawbone, scientists looked instead at the minute remains of proteins, which survive better than DNA but are less instructive.

More than 2,500 pieces of animal bone that were found during 2018 and 2019 digs at Baishiya cave were evaluated in the study, which was published on Wednesday.

Given that the majority of the fragments were too minute to identify by eye, the researchers used a relatively new method called Zooarchaeology by Mass Spectrometry (ZooMS), which enables them to glean important information from specimens that may have previously gone unnoticed.

ZooMS assisted the researchers in identifying the type of animal Baishiya’s place in the Denisovan narrative based on subtle variations in the amino acid sequence of collagen preserved inside the bone.

The research identified carnivores such as hyenas in addition to large and small herbivores. In the Himalayas today, certain species are still common, such the blue sheep.

Cut markings on many of the bones indicated that the Denisovans were processing the animals for their hides in addition to their meat and bone marrow. According to the study, some bones were also utilized as instruments.

Overall, the variety of animal species discovered indicates that the region surrounding the cave was primarily covered in grasslands with a few tiny forested patches. This is comparable to the area today, though Zhang pointed out that the majority of the animals residing there now are domesticated goats and yaks.

The five-centimeter-long piece of rib bone was discovered by the scientists during the arduous, multi-month process of classifying the bones. Nevertheless, the protein information’s resolution was insufficiently clear to identify the type of human it had belonged to right away. Welker conducted additional study on the surviving ancient proteins, which identified it as Denisovan.

The scientists had previously collected Denisovan DNA from a layer of sediment from which the rib bone originated, and Zhang stated that they are attempting to recover DNA from the new specimen. The owner of the rib and the larger Denisovan community that formerly inhabited the region may be better understood genetically thanks to that approach.

Because there is so little known about the Denisovans, “each discovery is of major importance,” and the zooarchaeological analysis done by the authors of the new study was “particularly insightful,” according to Samantha Brown, an archaeologist and junior group leader for paleoproteomics at the University of Tübingen in Germany who has worked with Denisova Cave remains.

“The young age of the fossil was definitely surprising. At this time period we have evidence for modern humans occupying sites all the way (to) Australia. This really opens up conversations about the possibility of those groups interacting as modern humans moved into Asia and the Pacific but more evidence will likely be needed to understand the nature of those interactions,” said Brown, who was not involved in the research.

Zhang is excavating a second paleolithic site in the area that may have been inhabited by Denisovans or later modern people, while work at Baishiya Karst Cave is still ongoing, she said.

Current evidence indicates that Denisovans were the only human group to exist at Baishiya Karst Cave, unlike Denisova Cave, which was inhabited by Neanderthals, early modern humans, and Denisovans, according to Zhang. Because of this, the Tibetan plateau, sometimes referred to as “the roof of the world,” is an especially important location in the hunt for the answers to the numerous unanswered questions regarding the identity of the Denisovans, their appearance, their disappearance, and their position on the human family tree. The bones were legitimate.

The role of Baishiya in the Denisovan narrative

The investigation uncovered carnivores like hyenas in addition to big and small herbivores. Even now, the Himalayas remain home to several of the animals, such the blue sheep.

The Denisovans were processing the animals for their hides in addition to their meat and bone marrow, as evidenced by the cut marks on many of the bones. The research also found that certain bones were utilized as instruments.

Although Zhang pointed out that the majority of the animals residing there now are tamed yaks and goats, the diversity of animal species discovered collectively indicates the area surrounding the cave was dominated by a grass landscape with some minor woodland sections — similar to today.

The five-centimeter-long piece of rib bone was discovered by the scientists during the arduous, multi-month process of classifying the bones. Nevertheless, the protein information’s resolution was insufficiently clear to identify the type of human it had belonged to right away. Welker conducted additional study on the surviving ancient proteins, which identified it as Denisovan.

The scientists had previously collected Denisovan DNA from a layer of sediment from which the rib bone originated, and Zhang stated that they are attempting to recover DNA from the new specimen. The owner of the rib and the larger Denisovan community that formerly inhabited the region may be better understood genetically thanks to that approach.

Because there is so little known about the Denisovans, “each discovery is of major importance” and the zooarchaeological analysis carried out by the new study’s authors was “particularly insightful,”  according to Samantha Brown, an archaeologist and junior group leader for paleoproteomics at the University of Tübingen in Germany who has worked with Denisova Cave remains.

“The young age of the fossil was definitely surprising. At this time period we have evidence for modern humans occupying sites all the way (to) Australia. This really opens up conversations about the possibility of those groups interacting as modern humans moved into Asia and the Pacific but more evidence will likely be needed to understand the nature of those interactions,” said Brown, who was not involved in the research.

Zhang is excavating a second paleolithic site in the area that may have been inhabited by Denisovans or later modern people, while work at Baishiya Karst Cave is still ongoing, she said.

Current evidence indicates that Denisovans were the only human group to exist at Baishiya Karst Cave, unlike Denisova Cave, which was inhabited by Neanderthals, early modern humans, and Denisovans, according to Zhang. Because of this, the Tibetan plateau, sometimes referred to as “the roof of the world,” is an especially important location in the hunt for the answers to the numerous unanswered questions regarding the identity of the Denisovans, their appearance, their disappearance, and their position on the human family tree.

Continue Reading
Advertisement

Science

China’s Tianwen-2 Set for Launch to Asteroid and Comet

Published

on

China’s Tianwen-2 Set for Launch to Asteroid and Comet

China has taken a major step forward in its deep-space exploration efforts as the Tianwen-2 spacecraft arrived at the Xichang Satellite Launch Center in Sichuan province for final launch preparations. The China National Space Administration (CNSA) confirmed the development on February 20, 2025, signaling that the mission is on track for its scheduled launch in the first half of the year.

A Dual-Purpose Mission

The Tianwen-2 mission is a combined near-Earth asteroid sample return and comet rendezvous mission, marking another ambitious endeavor for China’s space program. The mission is set to launch aboard a Long March 3B rocket, with a tentative liftoff expected around May 2025.

The primary target of Tianwen-2 is the near-Earth asteroid Kamoʻoalewa (2016 HO3), a small celestial body with a diameter estimated between 40 to 100 meters. The asteroid is considered a quasi-satellite of Earth, meaning it follows a co-orbital path with our planet. Scientists believe Kamoʻoalewa might be a fragment of the Moon, ejected into space after an ancient impact event.

After collecting samples from Kamoʻoalewa, the main spacecraft will continue its journey to comet 311P/PANSTARRS, a celestial body that exhibits both asteroid-like and comet-like characteristics. By studying these two objects, scientists aim to gain valuable insights into the composition, evolution, and history of the solar system, including the distribution of water and organic molecules.

Launch Preparations Underway

CNSA stated that the launch site facilities are fully prepared, and pre-launch tests are proceeding as planned. Engineers and scientists are meticulously working to ensure the spacecraft is ready for its complex mission, which will involve multiple orbital maneuvers, sample collection, and deep-space travel over nearly a decade.

Sampling Kamoʻoalewa: Two Innovative Techniques

To collect material from Kamoʻoalewa, Tianwen-2 will employ two advanced sampling methods:

  1. Touch-and-Go (TAG) Method – This technique, used by NASA’s OSIRIS-REx and JAXA’s Hayabusa2 missions, involves briefly touching the asteroid’s surface to gather samples.
  2. Anchor-and-Attach System – This approach uses drills attached to the spacecraft’s landing legs, allowing for a more stable and secure extraction of subsurface material.

Early mission concepts, when Tianwen-2 was initially known as Zheng He, indicated that China aimed to collect between 200 and 1,000 grams of asteroid samples. These samples will help scientists analyze Kamoʻoalewa’s mineral composition, origin, and potential similarities with lunar material.

Challenges in Sample Return

Although China has successfully executed two lunar sample return missions—Chang’e-5 (2020) and Chang’e-6 (2024)—returning asteroid samples presents unique challenges. Unlike the Moon, Kamoʻoalewa has negligible gravity, requiring specialized landing and sampling techniques. Additionally, the reentry module carrying the samples will experience higher velocities, demanding advanced thermal protection and parachute deployment systems.

To address these challenges, the China Aerospace Science and Technology Corporation (CASC) conducted high-altitude parachute tests in 2023, ensuring the safe return of asteroid samples to Earth around 2027.

Comet Rendezvous: Studying 311P/PANSTARRS

Returning samples from Kamoʻoalewa will not mark the end of Tianwen-2’s mission. The spacecraft will execute a gravitational slingshot maneuver around Earth, propelling it toward comet 311P/PANSTARRS in the main asteroid belt. The rendezvous is expected around 2034.

311P/PANSTARRS is considered a transitional object between asteroids and comets, making it an ideal candidate for studying the origins of cometary activity within the asteroid belt. Scientists hope to analyze its orbit, rotation, surface composition, volatile elements, and dust emissions, shedding light on the evolution of comets in the inner solar system.

Scientific Instruments on Board

The Tianwen-2 spacecraft is equipped with a suite of cutting-edge instruments to study its targets, including:

  • Multispectral and infrared spectrometers – To analyze surface composition.
  • High-resolution cameras – To map geological features in detail.
  • Radar sounder – To probe subsurface structures.
  • Magnetometer – To search for residual magnetic fields.
  • Dust and gas analyzers – To examine cometary activity.
  • Charged particle detectors – To study interactions with the solar wind (developed in collaboration with the Russian Academy of Sciences).

China’s Expanding Deep-Space Ambitions

Tianwen-2 follows the highly successful Tianwen-1 Mars mission, which saw China land the Zhurong rover on Mars in 2021. The Tianwen series is a key part of China’s growing presence in deep-space exploration:

  • Tianwen-3 – A Mars sample return mission, scheduled for 2028–2030.
  • Tianwen-4 – A Jupiter system exploration mission, launching around 2030, featuring a solar-powered orbiter for Callisto and a radioisotope-powered spacecraft for a Uranus flyby.

Chinese researchers have emphasized the importance of asteroid sample return missions, citing their potential for groundbreaking scientific discoveries and the development of new space technologies.

With Tianwen-2, China is taking a bold step into the future of deep-space exploration. By returning samples from an asteroid and studying a comet, the mission will provide crucial insights into the origins of the solar system and planetary evolution. As launch preparations continue, the world eagerly anticipates another milestone in China’s space program.

Continue Reading

Science

SpaceX to Launch 21 Starlink Satellites from Florida on February 4

Published

on

SpaceX to Launch 21 Starlink Satellites from Florida on February 4

SpaceX plans to launch another batch of Starlink satellites into orbit from Florida’s Space Coast on February 4, 2025. The mission will deploy 21 Starlink satellites, including 13 equipped with direct-to-cell communications capabilities, marking another major step in SpaceX’s ambitious plan to provide global high-speed internet coverage.

The Falcon 9 rocket flight from Cape Canaveral Space Force Station is scheduled to take place during a roughly three-hour launch window that opens at 3:37 a.m. (0837 GMT). SpaceX will livestream the event on its X account (formerly Twitter), with coverage beginning about five minutes before liftoff.

The mission will use the experienced Falcon 9 first-stage rocket, which will be making its 21st launch and landing. According to SpaceX, this rocket has already flown on 20 missions, 16 of which were dedicated Starlink launches. If all goes as planned, the rocket will return to Earth about eight minutes after liftoff, landing on the unmanned “Just Read the Instructions” craft in the Atlantic Ocean.

The Falcon 9 upper stage will continue its journey to deploy 21 Starlink satellites into low Earth orbit (LEO) about 65 minutes after liftoff. This will be SpaceX’s 15th Falcon 9 mission in 2025, with nine flights dedicated to expanding the Starlink constellation.

Direct-to-cell capabilities


A notable feature of this mission is the inclusion of 13 Starlink satellites with direct-to-cell capability. These advanced satellites are designed to enable seamless connectivity for standard mobile phones, eliminating the need for specialized hardware. This technology has the potential to revolutionize communications in remote and underserved areas, providing reliable internet and cellular services directly to users’ devices.

The growing Starlink constellation


SpaceX is rapidly expanding its Starlink network, which is already the largest satellite constellation ever assembled. In 2024 alone, the company launched more than 130 Falcon 9 missions, about two-thirds of which were dedicated to Starlink deployments. According to astrophysicist and satellite tracker Jonathan McDowell, SpaceX currently operates nearly 7,000 Starlink satellites in LEO.

The Starlink network aims to provide high-speed, low-latency internet access to users around the world, especially in regions lacking traditional infrastructure. With this latest launch, SpaceX is expanding the network’s capacity and coverage, bringing its dream of global connectivity closer to reality.

Recyclability and sustainability


The Falcon 9 rocket’s first-stage booster exemplifies SpaceX’s commitment to reusability, a key factor in reducing the cost of spaceflight. By successfully landing and reusing the rocket, SpaceX has revolutionized the aerospace industry and set a new standard for sustainable space operations.

However, the rapid expansion of the Starlink constellation has raised concerns among astronomers and environmentalists. The growing number of satellites in LEO has created problems such as light pollution, which can interfere with astronomical observations, and space debris, which poses a threat to other spacecraft. SpaceX is actively working to mitigate these issues by implementing measures such as blacking out satellite surfaces and responsibly deorbiting inactive satellites.

The February 4 launch is part of SpaceX’s broader strategy to achieve global internet coverage and support its growing customer base. With the addition of direct-to-cell-connect satellites, the company is poised to offer even more versatile and simple connectivity solutions.

As SpaceX pushes the boundaries of space technology, the world will be watching to see how the Starlink network evolves and addresses the challenges associated with large-scale satellite constellations. For now, the focus is on the upcoming launch, which will mark another milestone in SpaceX’s journey to connect the world.

Continue Reading

Science

Scientists Trap Molecules for Quantum Tasks, Paving the Way for Ultra-Fast Tech Advancements

Published

on

Scientists Trap Molecules for Quantum Tasks, Paving the Way for Ultra-Fast Tech Advancements

In a groundbreaking milestone for quantum computing, researchers from Harvard University have successfully trapped molecules to perform quantum operations. This achievement marks a pivotal advancement in the field, potentially revolutionizing technology and enabling ultra-fast computations in medicine, science, and finance.

Molecules as Qubits: A New Frontier

Traditionally, quantum computing has focused on using smaller, less complex particles like ions and atoms as qubits—the fundamental units of quantum information. Molecules, despite their potential, were long considered unsuitable due to their intricate and delicate structures, which made them challenging to manipulate reliably.

However, the latest findings, published in the journal Nature, change this narrative. By utilizing ultra-cold polar molecules as qubits, the researchers have opened up new possibilities for performing quantum tasks with unprecedented precision.

A 20-Year Journey to Success

“This is a breakthrough we’ve been working toward for two decades,” said Kang-Kuen Ni, Theodore William Richards Professor of Chemistry and Physics at Harvard and senior co-author of the study.

Quantum computing leverages the principles of quantum mechanics to perform calculations exponentially faster than classical computers. It has the potential to solve problems that were once deemed unsolvable.

“Our work represents the last critical piece needed to construct a molecular quantum computer,” added co-author and postdoctoral fellow Annie Park, highlighting the significance of this achievement.

How Molecular Quantum Gates Work

Quantum gates, the building blocks of quantum operations, manipulate qubits by taking advantage of quantum phenomena like superposition and entanglement. Unlike classical logic gates that process binary bits (0s and 1s), quantum gates can process multiple states simultaneously, exponentially increasing computational power.

In this experiment, the researchers used the ISWAP gate, a crucial component that swaps the states of two qubits while applying a phase shift. This process is essential for creating entangled states—a cornerstone of quantum computing that allows qubits to remain correlated regardless of distance.

Overcoming Long-Standing Challenges

Earlier attempts to use molecules for quantum computing faced significant challenges. Molecules were often unstable, moving unpredictably and disrupting the coherence required for precise operations.

The Harvard team overcame these obstacles by trapping molecules in ultra-cold environments. By drastically reducing molecular motion, they achieved greater control over quantum states, paving the way for reliable quantum operations.

The breakthrough was a collaborative effort between Harvard researchers and physicists from the University of Colorado’s Center for Theory of Quantum Matter. The team meticulously measured two-qubit Bell states and minimized errors caused by residual motion, laying the groundwork for even more accurate future experiments.

Transforming the Quantum Landscape

“There’s immense potential in leveraging molecular platforms for quantum computing,” Ni noted. The team’s success is expected to inspire further innovations and ideas for utilizing the unique properties of molecules in quantum systems.

This advancement could significantly alter the quantum computing landscape, bringing researchers closer to developing a molecular quantum computer. Such a system would harness the unique capabilities of molecules, opening doors to unprecedented computational possibilities.

The Road Ahead

The implications of this achievement extend far beyond academia. By unlocking the potential of molecules as qubits, the researchers have taken a vital step toward creating powerful quantum computers capable of transforming industries ranging from pharmaceuticals to financial modeling.

As researchers continue to refine this technology, the dream of a molecular quantum computer—one that capitalizes on the complexities of molecular structures—moves closer to reality. This breakthrough represents not just a leap forward for quantum computing but a glimpse into the future of technology itself.

Continue Reading

Trending

error: Content is protected !!