Connect with us

Science

Sensors of world’s biggest computerized camera snap initial 3,200-megapixel images at SLAC

Published

on

Teams at the Department of Energy’s SLAC National Accelerator Laboratory have taken the initial 3,200-megapixel advanced photographs—the biggest at any point made in a solitary effort—with a phenomenal exhibit of imaging sensors that will end up being the essence of things to come camera of Vera C. Rubin Observatory.

The pictures are enormous to such an extent that it would take 378 4K super top quality TV screens to show one of them in full size, and their goal is high to the point that you could see a golf ball from around 15 miles away. These and different properties will before long drive extraordinary astrophysical exploration.

Next, the sensor cluster will be coordinated into the world’s biggest advanced camera, at present under development at SLAC. Once introduced at Rubin Observatory in Chile, the camera will deliver all encompassing pictures of the total Southern sky—one display like clockwork for a long time. Its information will take care of into the Rubin Observatory Legacy Survey of Space and Time (LSST)— a list of a bigger number of systems than there are living individuals on Earth and of the movements of incalculable astrophysical items. Utilizing the LSST Camera, the observatory will make the biggest cosmic film ever and shed light on the absolute greatest secrets of the universe, including dull issue and dim vitality.

The primary pictures taken with the sensors were a test for the camera’s central plane, whose get together was finished at SLAC in January.

“This is a huge milestone for us,” said Vincent Riot, LSST Camera project manager from DOE’s Lawrence Livermore National Laboratory. “The focal plane will produce the images for the LSST, so it’s the capable and sensitive eye of the Rubin Observatory.”

SLAC’s Steven Kahn, overseer of the observatory, stated, “This accomplishment is among the most huge of the whole Rubin Observatory Project. The finish of the LSST Camera central plane and its fruitful tests is a gigantic triumph by the camera group that will empower Rubin Observatory to convey cutting edge galactic science.”

A technological marvel for the best science

As it were, the central plane is like the imaging sensor of an advanced customer camera or the camera in a phone: It catches light radiated from or reflected by an item and changes over it into electrical signs that are utilized to create a computerized picture. Yet, the LSST Camera central plane is considerably more modern. Truth be told, it contains 189 individual sensors, or charge-coupled gadgets (CCDs), that each bring 16 megapixels to the table—about similar number as the imaging sensors of most current computerized cameras.

Sets of nine CCDs and their supporting hardware were amassed into square units, called “science rafts,” at DOE’s Brookhaven National Laboratory and sent to SLAC. There, the camera group embedded 21 of them, in addition to an extra four forte pontoons not utilized for imaging, into a matrix that holds them set up.

The central plane has some genuinely phenomenal properties. In addition to the fact that it contains an incredible 3.2 billion pixels, however its pixels are additionally little—around 10 microns wide—and the central plane itself is amazingly level, differing by close to a tenth of the width of a human hair. This permits the camera to deliver sharp pictures in extremely high goal. At multiple feet wide, the central plane is gigantic contrasted with the 1.4-inch-wide imaging sensor of a full-outline buyer camera and sufficiently huge to catch a part of the sky about the size of 40 full moons. At long last, the entire telescope is structured so that the imaging sensors will have the option to spot objects 100 million times dimmer than those noticeable to the unaided eye—an affectability that would let you see a light from a huge number of miles away.

“These specifications are just astounding,” said Steven Ritz, project scientist for the LSST Camera at the University of California, Santa Cruz. “These unique features will enable the Rubin Observatory’s ambitious science program.”

More than 10 years, the camera will gather pictures of around 20 billion universes. “These information will improve our insight into how worlds have advanced after some time and will let us test our models of dull issue and dim vitality more profoundly and exactly than any other time in recent memory,” Ritz said. “The observatory will be an awesome office for an expansive scope of science—from nitty gritty investigations of our close planetary system to investigations of faraway items toward the edge of the noticeable universe.”

A high-stakes get together process

The fulfillment of the central plane recently finished up six nerve-wracking a long time for the SLAC team that embedded the 25 pontoons into their limited openings in the framework. To amplify the imaging territory, the holes between sensors on neighboring pontoons are under five human hairs wide. Since the imaging sensors effectively break on the off chance that they contact one another, this made the entire activity dubious.

The pontoons are additionally expensive—up to $3 million each.

SLAC mechanical specialist Hannah Pollek, who worked at the cutting edge of sensor incorporation, stated, “The combination of high stakes and tight tolerances made this project very challenging. But with a versatile team we pretty much nailed it.”

The colleagues went through a year getting ready for the pontoon establishment by introducing various “practice” pontoons that didn’t go into the last central plane. That permitted them to consummate the methodology of pulling every one of the 2-foot-tall, 20-pound pontoons into the network utilizing a particular gantry created by SLAC’s Travis Lange, lead mechanical specialist on the pontoon establishment.

Tim Bond, top of the LSST Camera Integration and Test group at SLAC, stated, “The sheer size of the individual camera components is impressive, and so are the sizes of the teams working on them. It took a well-choreographed team to complete the focal plane assembly, and absolutely everyone working on it rose to the challenge.”

Taking the initial 3,200-megapixel images

The central plane has been put inside a cryostat, where the sensors are chilled off to negative 150 degrees Fahrenheit, their necessary working temperature. Following a while without lab access due to the Covid pandemic, the camera group continued its work in May with restricted limit and following severe social separating necessities. Broad tests are presently in progress to ensure the central plane meets the specialized prerequisites expected to help Rubin Observatory’s science program.

Taking the initial 3,200-megapixel pictures of an assortment of articles, including a Romanesco that was picked for its extremely itemized surface structure, was one of these tests. To do as such without a completely gathered camera, the SLAC group utilized a 150-micron pinhole to extend pictures onto the central plane. These photographs, which can be investigated in full goal on the web (joins at the base of the delivery), show the remarkable detail caught by the imaging sensors.

“Taking these pictures is a significant achievement,” said SLAC’s Aaron Roodman, the researcher answerable for the get together and testing of the LSST Camera. “With the tight determinations we truly pushed the constraints of what’s conceivable to exploit each square millimeter of the central plane and boost the science we can do with it.”

Camera group on the home stretch

Additional difficult work lies ahead as the group finishes the camera gathering.

In the following not many months, they will embed the cryostat with the central plane into the camera body and include the camera’s focal points, including the world’s biggest optical focal point, a screen and a channel trade framework for investigations of the night sky in various hues. By mid-2021, the SUV-sized camera will be prepared for definite testing before it starts its excursion to Chile.

“Nearing completion of the camera is very exciting, and we’re proud of playing such a central role in building this key component of Rubin Observatory,” said JoAnne Hewett, SLAC’s chief research officer and associate lab director for fundamental physics. “It’s a milestone that brings us a big step closer to exploring fundamental questions about the universe in ways we haven’t been able to before.”

Dan Smith is probably best known for his writing skill, which was adapted into news articles. He earned degree in Literature from Chicago University. He published his first book while an English instructor. After that he published 8 books in his career. He has more than six years’ experience in publication. And now he works as a writer of news on Apsters Media website which is related to news analysis from entertainment and technology industry.

Science

China’s Tianwen-2 Set for Launch to Asteroid and Comet

Published

on

China’s Tianwen-2 Set for Launch to Asteroid and Comet

China has taken a major step forward in its deep-space exploration efforts as the Tianwen-2 spacecraft arrived at the Xichang Satellite Launch Center in Sichuan province for final launch preparations. The China National Space Administration (CNSA) confirmed the development on February 20, 2025, signaling that the mission is on track for its scheduled launch in the first half of the year.

A Dual-Purpose Mission

The Tianwen-2 mission is a combined near-Earth asteroid sample return and comet rendezvous mission, marking another ambitious endeavor for China’s space program. The mission is set to launch aboard a Long March 3B rocket, with a tentative liftoff expected around May 2025.

The primary target of Tianwen-2 is the near-Earth asteroid Kamoʻoalewa (2016 HO3), a small celestial body with a diameter estimated between 40 to 100 meters. The asteroid is considered a quasi-satellite of Earth, meaning it follows a co-orbital path with our planet. Scientists believe Kamoʻoalewa might be a fragment of the Moon, ejected into space after an ancient impact event.

After collecting samples from Kamoʻoalewa, the main spacecraft will continue its journey to comet 311P/PANSTARRS, a celestial body that exhibits both asteroid-like and comet-like characteristics. By studying these two objects, scientists aim to gain valuable insights into the composition, evolution, and history of the solar system, including the distribution of water and organic molecules.

Launch Preparations Underway

CNSA stated that the launch site facilities are fully prepared, and pre-launch tests are proceeding as planned. Engineers and scientists are meticulously working to ensure the spacecraft is ready for its complex mission, which will involve multiple orbital maneuvers, sample collection, and deep-space travel over nearly a decade.

Sampling Kamoʻoalewa: Two Innovative Techniques

To collect material from Kamoʻoalewa, Tianwen-2 will employ two advanced sampling methods:

  1. Touch-and-Go (TAG) Method – This technique, used by NASA’s OSIRIS-REx and JAXA’s Hayabusa2 missions, involves briefly touching the asteroid’s surface to gather samples.
  2. Anchor-and-Attach System – This approach uses drills attached to the spacecraft’s landing legs, allowing for a more stable and secure extraction of subsurface material.

Early mission concepts, when Tianwen-2 was initially known as Zheng He, indicated that China aimed to collect between 200 and 1,000 grams of asteroid samples. These samples will help scientists analyze Kamoʻoalewa’s mineral composition, origin, and potential similarities with lunar material.

Challenges in Sample Return

Although China has successfully executed two lunar sample return missions—Chang’e-5 (2020) and Chang’e-6 (2024)—returning asteroid samples presents unique challenges. Unlike the Moon, Kamoʻoalewa has negligible gravity, requiring specialized landing and sampling techniques. Additionally, the reentry module carrying the samples will experience higher velocities, demanding advanced thermal protection and parachute deployment systems.

To address these challenges, the China Aerospace Science and Technology Corporation (CASC) conducted high-altitude parachute tests in 2023, ensuring the safe return of asteroid samples to Earth around 2027.

Comet Rendezvous: Studying 311P/PANSTARRS

Returning samples from Kamoʻoalewa will not mark the end of Tianwen-2’s mission. The spacecraft will execute a gravitational slingshot maneuver around Earth, propelling it toward comet 311P/PANSTARRS in the main asteroid belt. The rendezvous is expected around 2034.

311P/PANSTARRS is considered a transitional object between asteroids and comets, making it an ideal candidate for studying the origins of cometary activity within the asteroid belt. Scientists hope to analyze its orbit, rotation, surface composition, volatile elements, and dust emissions, shedding light on the evolution of comets in the inner solar system.

Scientific Instruments on Board

The Tianwen-2 spacecraft is equipped with a suite of cutting-edge instruments to study its targets, including:

  • Multispectral and infrared spectrometers – To analyze surface composition.
  • High-resolution cameras – To map geological features in detail.
  • Radar sounder – To probe subsurface structures.
  • Magnetometer – To search for residual magnetic fields.
  • Dust and gas analyzers – To examine cometary activity.
  • Charged particle detectors – To study interactions with the solar wind (developed in collaboration with the Russian Academy of Sciences).

China’s Expanding Deep-Space Ambitions

Tianwen-2 follows the highly successful Tianwen-1 Mars mission, which saw China land the Zhurong rover on Mars in 2021. The Tianwen series is a key part of China’s growing presence in deep-space exploration:

  • Tianwen-3 – A Mars sample return mission, scheduled for 2028–2030.
  • Tianwen-4 – A Jupiter system exploration mission, launching around 2030, featuring a solar-powered orbiter for Callisto and a radioisotope-powered spacecraft for a Uranus flyby.

Chinese researchers have emphasized the importance of asteroid sample return missions, citing their potential for groundbreaking scientific discoveries and the development of new space technologies.

With Tianwen-2, China is taking a bold step into the future of deep-space exploration. By returning samples from an asteroid and studying a comet, the mission will provide crucial insights into the origins of the solar system and planetary evolution. As launch preparations continue, the world eagerly anticipates another milestone in China’s space program.

Continue Reading

Science

SpaceX to Launch 21 Starlink Satellites from Florida on February 4

Published

on

SpaceX to Launch 21 Starlink Satellites from Florida on February 4

SpaceX plans to launch another batch of Starlink satellites into orbit from Florida’s Space Coast on February 4, 2025. The mission will deploy 21 Starlink satellites, including 13 equipped with direct-to-cell communications capabilities, marking another major step in SpaceX’s ambitious plan to provide global high-speed internet coverage.

The Falcon 9 rocket flight from Cape Canaveral Space Force Station is scheduled to take place during a roughly three-hour launch window that opens at 3:37 a.m. (0837 GMT). SpaceX will livestream the event on its X account (formerly Twitter), with coverage beginning about five minutes before liftoff.

The mission will use the experienced Falcon 9 first-stage rocket, which will be making its 21st launch and landing. According to SpaceX, this rocket has already flown on 20 missions, 16 of which were dedicated Starlink launches. If all goes as planned, the rocket will return to Earth about eight minutes after liftoff, landing on the unmanned “Just Read the Instructions” craft in the Atlantic Ocean.

The Falcon 9 upper stage will continue its journey to deploy 21 Starlink satellites into low Earth orbit (LEO) about 65 minutes after liftoff. This will be SpaceX’s 15th Falcon 9 mission in 2025, with nine flights dedicated to expanding the Starlink constellation.

Direct-to-cell capabilities


A notable feature of this mission is the inclusion of 13 Starlink satellites with direct-to-cell capability. These advanced satellites are designed to enable seamless connectivity for standard mobile phones, eliminating the need for specialized hardware. This technology has the potential to revolutionize communications in remote and underserved areas, providing reliable internet and cellular services directly to users’ devices.

The growing Starlink constellation


SpaceX is rapidly expanding its Starlink network, which is already the largest satellite constellation ever assembled. In 2024 alone, the company launched more than 130 Falcon 9 missions, about two-thirds of which were dedicated to Starlink deployments. According to astrophysicist and satellite tracker Jonathan McDowell, SpaceX currently operates nearly 7,000 Starlink satellites in LEO.

The Starlink network aims to provide high-speed, low-latency internet access to users around the world, especially in regions lacking traditional infrastructure. With this latest launch, SpaceX is expanding the network’s capacity and coverage, bringing its dream of global connectivity closer to reality.

Recyclability and sustainability


The Falcon 9 rocket’s first-stage booster exemplifies SpaceX’s commitment to reusability, a key factor in reducing the cost of spaceflight. By successfully landing and reusing the rocket, SpaceX has revolutionized the aerospace industry and set a new standard for sustainable space operations.

However, the rapid expansion of the Starlink constellation has raised concerns among astronomers and environmentalists. The growing number of satellites in LEO has created problems such as light pollution, which can interfere with astronomical observations, and space debris, which poses a threat to other spacecraft. SpaceX is actively working to mitigate these issues by implementing measures such as blacking out satellite surfaces and responsibly deorbiting inactive satellites.

The February 4 launch is part of SpaceX’s broader strategy to achieve global internet coverage and support its growing customer base. With the addition of direct-to-cell-connect satellites, the company is poised to offer even more versatile and simple connectivity solutions.

As SpaceX pushes the boundaries of space technology, the world will be watching to see how the Starlink network evolves and addresses the challenges associated with large-scale satellite constellations. For now, the focus is on the upcoming launch, which will mark another milestone in SpaceX’s journey to connect the world.

Continue Reading

Science

Scientists Trap Molecules for Quantum Tasks, Paving the Way for Ultra-Fast Tech Advancements

Published

on

Scientists Trap Molecules for Quantum Tasks, Paving the Way for Ultra-Fast Tech Advancements

In a groundbreaking milestone for quantum computing, researchers from Harvard University have successfully trapped molecules to perform quantum operations. This achievement marks a pivotal advancement in the field, potentially revolutionizing technology and enabling ultra-fast computations in medicine, science, and finance.

Molecules as Qubits: A New Frontier

Traditionally, quantum computing has focused on using smaller, less complex particles like ions and atoms as qubits—the fundamental units of quantum information. Molecules, despite their potential, were long considered unsuitable due to their intricate and delicate structures, which made them challenging to manipulate reliably.

However, the latest findings, published in the journal Nature, change this narrative. By utilizing ultra-cold polar molecules as qubits, the researchers have opened up new possibilities for performing quantum tasks with unprecedented precision.

A 20-Year Journey to Success

“This is a breakthrough we’ve been working toward for two decades,” said Kang-Kuen Ni, Theodore William Richards Professor of Chemistry and Physics at Harvard and senior co-author of the study.

Quantum computing leverages the principles of quantum mechanics to perform calculations exponentially faster than classical computers. It has the potential to solve problems that were once deemed unsolvable.

“Our work represents the last critical piece needed to construct a molecular quantum computer,” added co-author and postdoctoral fellow Annie Park, highlighting the significance of this achievement.

How Molecular Quantum Gates Work

Quantum gates, the building blocks of quantum operations, manipulate qubits by taking advantage of quantum phenomena like superposition and entanglement. Unlike classical logic gates that process binary bits (0s and 1s), quantum gates can process multiple states simultaneously, exponentially increasing computational power.

In this experiment, the researchers used the ISWAP gate, a crucial component that swaps the states of two qubits while applying a phase shift. This process is essential for creating entangled states—a cornerstone of quantum computing that allows qubits to remain correlated regardless of distance.

Overcoming Long-Standing Challenges

Earlier attempts to use molecules for quantum computing faced significant challenges. Molecules were often unstable, moving unpredictably and disrupting the coherence required for precise operations.

The Harvard team overcame these obstacles by trapping molecules in ultra-cold environments. By drastically reducing molecular motion, they achieved greater control over quantum states, paving the way for reliable quantum operations.

The breakthrough was a collaborative effort between Harvard researchers and physicists from the University of Colorado’s Center for Theory of Quantum Matter. The team meticulously measured two-qubit Bell states and minimized errors caused by residual motion, laying the groundwork for even more accurate future experiments.

Transforming the Quantum Landscape

“There’s immense potential in leveraging molecular platforms for quantum computing,” Ni noted. The team’s success is expected to inspire further innovations and ideas for utilizing the unique properties of molecules in quantum systems.

This advancement could significantly alter the quantum computing landscape, bringing researchers closer to developing a molecular quantum computer. Such a system would harness the unique capabilities of molecules, opening doors to unprecedented computational possibilities.

The Road Ahead

The implications of this achievement extend far beyond academia. By unlocking the potential of molecules as qubits, the researchers have taken a vital step toward creating powerful quantum computers capable of transforming industries ranging from pharmaceuticals to financial modeling.

As researchers continue to refine this technology, the dream of a molecular quantum computer—one that capitalizes on the complexities of molecular structures—moves closer to reality. This breakthrough represents not just a leap forward for quantum computing but a glimpse into the future of technology itself.

Continue Reading

Trending

error: Content is protected !!