Connect with us

Science

SpaceX will launch 24 Starlink satellites from Florida on Monday

Published

on

SpaceX is scheduled to launch 24 more Starlink broadband satellites from the Space Coast of Florida on Monday, November 11.

From Cape Canaveral Space Force Station, a Falcon 9 rocket carrying the Starlink spacecraft is set to launch Monday within a four-hour window that begins at 4:02 p.m. EST (2102 GMT). Due to “unfavorable recovery weather conditions,” SpaceX had to postpone the launch, which was initially scheduled for Sunday evening.

Starting approximately five minutes prior to liftoff, SpaceX will broadcast the launch live on X.

Eight minutes after takeoff, assuming everything goes according to plan, the Falcon 9’s first stage will return to Earth for a vertical touchdown on the droneship “A Shortfall.”

Meanwhile, the 24 Starlink satellites will continue to be carried by the upper stage of the Falcon 9 to low Earth orbit (LEO), where they will be deployed around 65 minutes following liftoff.

The launch on Monday comes after another Starlink mission took off early Saturday morning from Vandenberg Space Force Base in California.

Science

Scientists Trap Molecules for Quantum Tasks, Paving the Way for Ultra-Fast Tech Advancements

Published

on

Scientists Trap Molecules for Quantum Tasks, Paving the Way for Ultra-Fast Tech Advancements

In a groundbreaking milestone for quantum computing, researchers from Harvard University have successfully trapped molecules to perform quantum operations. This achievement marks a pivotal advancement in the field, potentially revolutionizing technology and enabling ultra-fast computations in medicine, science, and finance.

Molecules as Qubits: A New Frontier

Traditionally, quantum computing has focused on using smaller, less complex particles like ions and atoms as qubits—the fundamental units of quantum information. Molecules, despite their potential, were long considered unsuitable due to their intricate and delicate structures, which made them challenging to manipulate reliably.

However, the latest findings, published in the journal Nature, change this narrative. By utilizing ultra-cold polar molecules as qubits, the researchers have opened up new possibilities for performing quantum tasks with unprecedented precision.

A 20-Year Journey to Success

“This is a breakthrough we’ve been working toward for two decades,” said Kang-Kuen Ni, Theodore William Richards Professor of Chemistry and Physics at Harvard and senior co-author of the study.

Quantum computing leverages the principles of quantum mechanics to perform calculations exponentially faster than classical computers. It has the potential to solve problems that were once deemed unsolvable.

“Our work represents the last critical piece needed to construct a molecular quantum computer,” added co-author and postdoctoral fellow Annie Park, highlighting the significance of this achievement.

How Molecular Quantum Gates Work

Quantum gates, the building blocks of quantum operations, manipulate qubits by taking advantage of quantum phenomena like superposition and entanglement. Unlike classical logic gates that process binary bits (0s and 1s), quantum gates can process multiple states simultaneously, exponentially increasing computational power.

In this experiment, the researchers used the ISWAP gate, a crucial component that swaps the states of two qubits while applying a phase shift. This process is essential for creating entangled states—a cornerstone of quantum computing that allows qubits to remain correlated regardless of distance.

Overcoming Long-Standing Challenges

Earlier attempts to use molecules for quantum computing faced significant challenges. Molecules were often unstable, moving unpredictably and disrupting the coherence required for precise operations.

The Harvard team overcame these obstacles by trapping molecules in ultra-cold environments. By drastically reducing molecular motion, they achieved greater control over quantum states, paving the way for reliable quantum operations.

The breakthrough was a collaborative effort between Harvard researchers and physicists from the University of Colorado’s Center for Theory of Quantum Matter. The team meticulously measured two-qubit Bell states and minimized errors caused by residual motion, laying the groundwork for even more accurate future experiments.

Transforming the Quantum Landscape

“There’s immense potential in leveraging molecular platforms for quantum computing,” Ni noted. The team’s success is expected to inspire further innovations and ideas for utilizing the unique properties of molecules in quantum systems.

This advancement could significantly alter the quantum computing landscape, bringing researchers closer to developing a molecular quantum computer. Such a system would harness the unique capabilities of molecules, opening doors to unprecedented computational possibilities.

The Road Ahead

The implications of this achievement extend far beyond academia. By unlocking the potential of molecules as qubits, the researchers have taken a vital step toward creating powerful quantum computers capable of transforming industries ranging from pharmaceuticals to financial modeling.

As researchers continue to refine this technology, the dream of a molecular quantum computer—one that capitalizes on the complexities of molecular structures—moves closer to reality. This breakthrough represents not just a leap forward for quantum computing but a glimpse into the future of technology itself.

Continue Reading

Science

NASA’s JPL Set to Resume Normal Operations After L.A. Fires

Published

on

NASA’s JPL Set to Resume Normal Operations After L.A. Fires

NASA’s Jet Propulsion Laboratory (JPL) is preparing to return to regular operations following disruptions caused by the Eaton Fire, which impacted areas near Los Angeles.

Located at the base of the San Gabriel Mountains, JPL faced threats from the fire, which has heavily affected nearby communities like Altadena. The lab, known as NASA’s primary hub for planetary exploration, has been closed since January 8, except for essential activities like managing the Perseverance and Curiosity Mars rovers and other critical missions.

With the Eaton Fire no longer posing a direct threat, JPL plans to reopen next week.

“From Tuesday, Jan. 21 through Jan. 24, 2025, the lab will be accessible to any personnel who need to work on-site. Personnel able to telework are encouraged to do so as the facility undergoes full and final cleanup,” JPL officials stated on their emergency information site on Friday, Jan. 17.

The fire’s impact has been severe, with widespread damage in the community. “Significant devastation in our community. 1,000 still evacuated. More than 150 homes completely lost, and many others will face long-term displacement,” JPL Director Laurie Leshin shared in a post on X on Jan. 10.

In a subsequent post, Leshin provided a link to a disaster-relief fundraising site aimed at supporting JPL employees and staff from the California Institute of Technology in Pasadena, which manages the facility for NASA.

The Eaton Fire has burned 14,117 acres (5,713 hectares) so far and is now 65% contained, according to NBC News. Meanwhile, the larger Palisades Fire has scorched 23,713 acres (9,596 hectares) and remains just 31% contained, making it the most destructive of the recent L.A. fires.

Continue Reading

Science

SpaceX will begin a busy year for moon missions this week with the launch of two private lunar landers

Published

on

SpaceX will begin a busy year for moon missions this week with the launch of two private lunar landers

A busy year of lunar missions will begin this week with the launch of two private lunar landers on the same rocket.

The SpaceX Falcon 9 rocket that will launch the missions has a six-day window starting early Wednesday morning (Jan. 15). Liftoff from Launch Complex-39B at NASA’s Kennedy Space Center (KSC) in Florida is set for 1:11 a.m. EST (0611 GMT).

Both landers will be transported by Falcon 9 to Earth orbit, where they will start separate journeys to the moon. The goal of Firefly Aerospace’s Blue Ghost Mission 1 lunar lander, Ghost Riders in the Sky, is to transport scientific payloads to the moon’s surface as part of NASA’s Commercial Lunar Payload Services (CLPS) program. Resilience, the second lander, is the second mission that the Japanese corporation ispace has undertaken in an attempt to land on the moon. Blue Ghost will be followed by iSpace’s Mission 2, which will take almost four times as long to finish.

In order to set its course toward the moon, Blue Ghost will orbit the Earth for 25 days before an engine fire. If all goes according to plan, the lander will autonomously land in Mare Crisium (“Sea of Crises”) after another 20 days, which includes 16 days in lunar orbit and four days in transit, to start two weeks of lunar science.

About five hours after nightfall on the lander’s site, Blue Ghost’s 60-day journey from Earth to the moon would come to an end. Before shutting down, the spacecraft will use its remaining battery power to take a picture of the lunar sunset.

After launch, the Resilience lander is expected to settle four to five months later on a significantly slower trajectory. Based on the lessons acquired during Hakuto-R Mission 1, ispace’s second mission, Resilience, has been outfitted with both software and hardware enhancements. In April 2023, the mission’s attempt to land was unsuccessful due to a malfunctioning altitude sensor on the lander, which caused a crash on the lunar surface. The mission had successfully reached lunar orbit.

With Hakuto-R Mission 2, ispace is adopting a methodical approach, outlining a 10-step list of milestones Resilience will accomplish en route to the moon, along with an additional checklist for objectives accomplished after a successful lunar landing. In the northern hemisphere of the moon, the lander is headed for Mare Frigoris (Sea of Cold), where it will start surface operations. As part of a contract with NASA, the lander will deploy an onboard microrover called Tenacious to gather a sample of regolith, or moon dust.

Future months will see more moon missions

Another lunar laundering operation, this time from the only private corporation to land on the moon so far, will follow this week’s Falcon 9 mission to the moon in a short period of time.

In February 2024, Intuitive Machines launched Odysseus, its first Nova-C lander, carrying six NASA CLPS payloads along with six additional commercial payloads. Odysseus made a largely successful landing on that mission, called IM-1, close to the crater Malapert A, which is roughly 190 miles (300 kilometers) from the lunar south pole.

IM-2 is scheduled to launch in February and will similarly travel to the south pole area of the moon, namely to a ridge close to Shackleton Crater. Among the several CLPS payloads that IM-2 will transport for NASA is an experiment known as PRIME-1 (Polar Resources Ice Mining Experiment-1), which will assist in verifying the region’s water ice abundance.

Later in 2025, a third Nova-C lander is scheduled to fly on the IM-3 mission, bringing another round of CLPS experiments and technology demonstrations on the lunar surface for the space agency.

Another probe carrying NASA CLPS payloads, Griffin Mission One, is another project that Pittsburgh-based startup Astrobotic is aiming for this year. A fuel leak prevented the company’s Peregrine lunar lander from reaching the moon after it launched last year. The probe was instead returned to Earth by its handlers, where it burned up during atmospheric descent over the Pacific Ocean.

The goal of NASA’s several CLPS contracts is to advance the agency’s Artemis program, which intends to send humans to the moon in 2027 and eventually establish a base in the southern polar area of the moon, where water ice seems to be abundant. NASA gave Human Landing Services (HLS) contracts to businesses to transport astronauts to the moon’s surface, much like CLPS did. In 2025, SpaceX’s Starship rocket—which was awarded NASA’s first HLS contract—is anticipated to do dozens of test flights, maybe including one around the moon.

By using its Blue Moon lander to transport humans to the lunar surface for missions beyond Artemis 3, Blue Origin was awarded NASA’s second HLS contract.Blue Origin’s MK1 Lunar Lander pathfinder mission is on track for a potential 2025 launch after the company’s New Glenn rocket launched successfully on January 12.

Continue Reading

Trending

error: Content is protected !!