Connect with us

Health

Upcoming diets won’t have enough micronutrients like iron, so it’s important to think about how we’ll feed people

Published

on

One of the most widespread types of nutrient shortage in the globe is iron deficiency.

In areas like South Asia, Central Africa, and West Africa, approximately 50% of women of reproductive age suffer from severe iron deficiency, generally known as anaemia (compared to 16% of women in high-income nations).

In New Zealand, iron insufficiency affects 12.1% of women over the age of 31 and 10.6% of women between the ages of 15 and 18. In order to protect both the mother and the unborn child’s health during the third trimester of pregnancy, the risk increases and the iron status must be closely checked.

The likelihood of iron deficiency will probably rise as more people think about transitioning to plant-based diets.

If present patterns of food production and supply around the world are maintained, our analysis of nutrient availability in current and future global food systems also indicates that we can anticipate a shortfall in dietary iron by 2040.

This suggests that iron deficiency in our diets will need to be addressed, especially in populations with greater requirements like teenagers and women. We contend that adding iron to meals could serve as a one-stop solution to repair nutrient gaps brought on by insufficient dietary consumption.

Food Augmentation

Numerous items on grocery shelves, such as essentials like bread and cereals, already include additional nutrients.

There is currently no government programme to promote or mandate iron fortification in New Zealand, in contrast to mandated iodine and folic acid fortification of bread.

We contend that adding iron to our meals may be a practical and economical strategy to supply a source of dietary iron because iron-fortification strategies have the ability to avoid inadequacies in many nations, including New Zealand.

Eat more plant-based foods

In an effort to lessen their meals’ negative effects on the environment and emissions, more customers are choosing to eat less food derived from animals. According to recent data, New Zealanders’ acceptance of vegan and vegetarian diets will rise by 19% between 2018 and 2021.

A sustainable food system must take into account these plant-based diets while having discussions about nutritional accessibility. High levels of phytates and fibre are frequently found in plant diets, which hinder the body’s ability to absorb iron.

Non-heme iron, which is found in plant foods including whole grains, nuts, seeds, legumes, and leafy greens, is less easily absorbed than heme iron found in meals derived from animals. The eating of some red meat, fish, or poultry as part of a balanced diet that includes vegetables, cereals, and foods derived from animals promotes non-heme iron absorption.

By adding nutrients to plant-based diets that would otherwise be low in them, fortification can be a powerful method for encouraging people to switch to them.

A recent study examining this possibility found that adding key micronutrients to meals, such as iron, enables a more gradual dietary change. This strategy might be useful for consumers who want to increase their consumption of plant-based foods without sacrificing adequate nutrient intake.

There’s a catch, though. These foods with added iron frequently have wheat or cereal-based ingredients, which can prevent the body from absorbing iron. Due to the phenolic chemicals found in coffee and tea, which can be ingested with these traditional breakfast dishes, the inhibitory effect may be considerably more potent.

Eating foods high in vitamin C, such as orange juice, which helps to transform iron into a more absorbable form, along with iron-rich plant foods could be one answer.

Is NZ ready for meals with added iron?

Some customers are cautious to use fortified foods in their diets, despite the fact that they can provide significant advantages in the fight against iron deficiency.

Food Standards Australia New Zealand (FSANZ), a government organisation in charge of creating food laws for both countries, discovered that many customers were hesitant to choose fortified foods because they perceived them as unnatural, processed, and less healthful. This hesitation was especially noticeable when it came to optional fortifications. Non-mandatory or “voluntary fortification” includes adding vitamins and minerals to breakfast cereals, or more recently, plant-based milks and meat substitutes.

Customers frequently view this as a marketing strategy rather than a measure that promotes health.

It is critical to assess the advantages of fortification given the significance of dietary iron intake and the anticipated shortage of dietary iron.Consumer acceptability of these programmes might be increased by educational efforts including raising knowledge of iron deficiency and the advantages of fortification.

Health

How the brain makes complex judgments based on context

Published

on

We frequently face difficult choices in life that are impacted by a number of variables. The orbitofrontal cortex (OFC) and the dorsal hippocampus (DH) are two key brain regions that are essential for our capacity to adjust and make sense of these unclear situations.

According to research conducted by researchers at the University of California Santa Barbara (UCSB), these regions work together to resolve ambiguity and facilitate quick learning.

Decision-making that depends on context

The results, which were released in the journal Current Biology, offer fresh perspectives on how certain brain regions assist us in navigating situations that depend on context and modifying our behavior accordingly.

According to UCSB neuroscientist Ron Keiflin, senior author, “I would argue that that’s the foundation of cognition.” That’s what prevents us from acting like mindless machines that react to stimuli in the same way every time.

“Our ability to understand that the meaning of certain stimuli is context-dependent is what gives us flexibility; it is what allows us to act in a situation-appropriate manner.”

Decision-making context

Think about choosing whether or not to answer a ringing phone. What you say depends on a number of variables, including the time of day, who might be calling, and where you are.

The “context,” which influences your choice, is made up of several components. The interaction between the OFC and DH is what gives rise to this cognitive flexibility, according to Keiflin.

Planning, reward valuation, and decision-making are linked to the OFC, which is situated directly above the eyes, whereas memory and spatial navigation depend on the DH, which is positioned deeper in the brain.

According to Keiflin, both areas contribute to a mental representation of the causal structure of the environment, or a “cognitive map.” The brain can model outcomes, forecast outcomes, and direct behavior thanks to this map.

Despite their significance, up until now there had been no systematic testing of the precise functions of these regions in contextual disambiguation, which determines how stimuli alter meaning based on context.

Contextualizing auditory stimuli

In order to find out, the researchers created an experiment in which rats were exposed to aural cues in two distinct settings: a room with bright lighting and a chamber with no light. There was a context-dependent meaning for every sound.

For instance, one sound indicated a reward (sugar water) only when it was light, and another only when it was dark.

The rats eventually learnt to link each sound to the appropriate context, and in one situation they showed that they understood by licking the reward cup in anticipation of a treat, but not in the other.

The OFC or DH was then momentarily disabled during the task by the researchers using chemogenetics. The rats’ ability to use context to predict rewards and control their behavior was lost when the OFC was turned off.

Disabling the DH, however, had minimal effect on performance, which was unexpected considering its well-established function in memory and spatial processing.

Enhanced learning from prior knowledge

For learning new context-dependent interactions, the DH proved essential, but it appeared to be unnecessary for recalling previously learned ones.

“If I walked into an advanced math lecture, I would understand – and learn – very little. But someone more mathematically knowledgeable would be able to understand the material, which would greatly facilitate learning,” Keiflin explained.

Additionally, the rats were able to pick up new relationships far more quickly after they had created a “cognitive map” of context-dependent interactions. The duration of training decreased from more than four months to a few days.

Brain areas cooperating

By employing the same chemogenetic strategy, the researchers discovered that the rats’ capacity to use past information to discover new associations was hampered when the OFC or DH were disabled.

While the DH allowed for the quick learning of novel context-dependent relationships, the OFC was crucial for using contextual knowledge to control immediate action.

This dual role emphasizes how these brain regions assist learning and decision-making in complementary ways.

Education and neuroscience Implications

According to Keiflin, neuroscience research frequently overlooks the well-established psychological and educational theories that prior information affects learning.

Knowing how the brain leverages past information to support learning could help develop educational plans and therapies for people who struggle with learning.

The study clarifies the different functions of the DH and OFC as well. In order to acquire new relationships, the DH is more important than the OFC, which aids in behavior regulation based on contextual knowledge.

These areas work together to help the brain adjust to complicated, dynamic surroundings.

Brain’s Capacity to make Decisions based on context

The study emphasizes how crucial contextual knowledge is for managing day-to-day existence. Human cognition is based on the brain’s capacity to resolve ambiguity, whether it be while choosing whether to answer a ringing phone or when adjusting to new knowledge.

This work highlights the complex processes that facilitate learning and decision-making while also advancing our knowledge of brain function by elucidating the functions of the OFC and DH.

This information creates opportunities to investigate the potential roles that disturbances in these systems may play in disorders like anxiety or problems with decision-making.

Since this type of learning is most likely far more reflective of the human learning experience, Keiflin stated that “a better neurobiological understanding of this rapid learning and inference of context-dependent relations is critical, as this form of learning is probably much more representative of the human learning experience.” 

The results open the door for future studies on the interactions between these brain areas in challenging, real-world situations, which could have implications for mental health and education.

Continue Reading

Health

Nutrition and Its Role in Preventing Chronic Diseases

Published

on

Nutrition plays a pivotal role in maintaining overall health and preventing chronic diseases. The food we consume directly impacts our body’s ability to function optimally and ward off illnesses. Chronic diseases such as heart disease, diabetes, obesity, and certain types of cancer are closely linked to dietary habits. By adopting a balanced and nutritious diet, individuals can significantly reduce their risk of developing these conditions and improve their quality of life.

Understanding Chronic Diseases and Their Dietary Links

Chronic diseases are long-term health conditions that often develop gradually and persist for years. While genetics and environmental factors contribute to their onset, lifestyle choices—especially diet—play a significant role. Some key dietary factors influencing chronic disease risk include:

  • Excessive Calorie Intake: Overeating leads to obesity, which is a major risk factor for diabetes, heart disease, and certain cancers.
  • High Saturated and Trans Fat Consumption: These fats contribute to high cholesterol levels and increase the risk of cardiovascular diseases.
  • Excessive Sugar and Refined Carbohydrates: These can lead to insulin resistance and type 2 diabetes.
  • Low Fiber Intake: Insufficient dietary fiber is linked to digestive issues, high cholesterol, and increased risk of colon cancer.
  • Inadequate Micronutrients: Deficiencies in vitamins and minerals weaken the immune system and impair bodily functions.

Key Nutritional Strategies for Preventing Chronic Diseases

  1. Adopting a Balanced Diet: A well-rounded diet that includes fruits, vegetables, whole grains, lean proteins, and healthy fats provides essential nutrients and minimizes disease risk.
  2. Increasing Fiber Intake: Consuming fiber-rich foods such as whole grains, legumes, and vegetables helps regulate blood sugar levels, lower cholesterol, and improve gut health.
  3. Limiting Sugar and Processed Foods: Reducing intake of sugary drinks, snacks, and highly processed foods can prevent weight gain and lower the risk of metabolic disorders.
  4. Choosing Healthy Fats: Incorporating unsaturated fats from sources like nuts, seeds, and olive oil supports heart health while avoiding trans fats found in fried and processed foods.
  5. Maintaining Proper Hydration: Drinking enough water supports metabolic processes and helps maintain healthy weight.
  6. Monitoring Portion Sizes: Eating appropriate portions prevents overeating and helps maintain a healthy body weight.

Evidence-Based Benefits of Proper Nutrition

  1. Reduced Risk of Heart Disease: Diets rich in omega-3 fatty acids, fiber, and antioxidants help reduce cholesterol and blood pressure.
  2. Improved Glycemic Control: Balanced meals with low glycemic index foods prevent blood sugar spikes and reduce the risk of diabetes.
  3. Weight Management: Healthy eating habits help achieve and maintain an ideal weight, minimizing the risk of obesity-related diseases.
  4. Lower Cancer Risk: Antioxidants found in fruits and vegetables combat oxidative stress, reducing the risk of certain cancers.
  5. Enhanced Longevity: Nutrient-dense diets promote overall health and increase life expectancy.

Continue Reading

Health

Poor Sleep During Pregnancy to Problems with the Development of the Child: Study

Published

on

According to a recent study in the Journal of Clinical Endocrinology and Metabolism, pregnant women who don’t get enough sleep are more likely to give birth to infants who have delayed neurodevelopment.

According to the study, babies born to pregnant women who slept fewer than seven hours a day on average had serious neurodevelopmental problems, with boys being especially at risk. Pregnancy-related sleep deprivation has been associated with impairments in the children’s emotional, behavioral, motor, cognitive, and language development.

Additionally, elevated C-peptide levels in the umbilical cord blood of these kids were discovered, which suggests that insulin manufacturing has changed. One result of the pancreas’ production of insulin is C-peptide.

Additionally, the study demonstrated that disorders like impaired glucose tolerance, insulin resistance, and gestational diabetes—all of which were previously linked to inadequate sleep during pregnancy—can affect a child’s neurodevelopment.

The study team clarified that maternal glucose metabolism during pregnancy may influence fetal insulin secretion, which in turn may effect neurodevelopment, even if they were unable to conclusively demonstrate that sleep deprivation actually causes neurodevelopmental abnormalities.

Continue Reading

Trending

error: Content is protected !!